None

碩士 === 國立中央大學 === 化學工程與材料工程研究所 === 100 === In this simulation study, several adsorption process is utilized to separate CO2 and N2 from the power plant flue gas(15.03% CO2和84.97% N2) with solid polyaniline sorbent. CO2 can be recovered and sequestrated to reduce green- house-gas effects. The method...

Full description

Bibliographic Details
Main Authors: Chih-hsiang Huang, 黃致翔
Other Authors: Cheng-tung Chou
Format: Others
Language:zh-TW
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/jv57ze
Description
Summary:碩士 === 國立中央大學 === 化學工程與材料工程研究所 === 100 === In this simulation study, several adsorption process is utilized to separate CO2 and N2 from the power plant flue gas(15.03% CO2和84.97% N2) with solid polyaniline sorbent. CO2 can be recovered and sequestrated to reduce green- house-gas effects. The method of lines is utilized, combined with upwind differences, cubic spline approximation and LSODE of ODEPACK software to solve the problem. The concentration, temperature, and adsorption quantity in the bed are integrated with respect to time by LSODE of ODEPACK software. The simulation is stopped when the system reaches a cyclic steady state. Four different processes have been used in this study, single-bed five-step temperature swing adsorption (TSA) process, single-bed two-step pressure swing adsorption (PSA) process, single-bed three-step PSA process and dual-bed six-step PSA process. The optimal operating condition is obtained by varying the operating variables, such as adsorption temperature, desorption temperature, feed pressure, bed length, step time, etc. After the variables discussion, the best process is single-bed three-step PSA process and the best operating condition is feed pressure 6.0 atm, cocurrent depressurization pressure 1.0 atm, vacuum pressure 0.1 atm, bed length 98.3 cm and step time at 1200, 10 and 500 s. The results of the best operating condition are 97.13% purity and 87.26% recovery of CO2 with an energy consumption of 1.39 GJ/tonCO2.