The Study on the Application of De-embedding Techniques, Inductors and Pads in Silicon Process

碩士 === 國立中央大學 === 電機工程研究所 === 93 === Abstract The purpose of this thesis studies on the de-embedded techniques applied in silicon base processes, such as CMOS and Silicon-Germanium technologies, the de-embedding techniques, parasitic effects, spiral inductors, and PADs will be discussed in detail. T...

Full description

Bibliographic Details
Main Authors: Yu-Ze Yang, 楊渝澤
Other Authors: none
Format: Others
Language:zh-TW
Published: 2004
Online Access:http://ndltd.ncl.edu.tw/handle/85918835108331124049
Description
Summary:碩士 === 國立中央大學 === 電機工程研究所 === 93 === Abstract The purpose of this thesis studies on the de-embedded techniques applied in silicon base processes, such as CMOS and Silicon-Germanium technologies, the de-embedding techniques, parasitic effects, spiral inductors, and PADs will be discussed in detail. The spiral inductor designs are investigated with different shielding techniques. The quality factor Q and self-resonant frequency are the figure of merit of these inductor designs. The inductor with mesh deep trench shielding achieved the best quality factor and highest self resonant frequency. Finally, a PAD model is investigated and the equivalent circuit model is presented up to 20 GHz. The first part in this thesis is to introduce the de-embedding structure. Several de-embedding methods are introduced and given some meaningful comparisons. The completed de-embedding techniques and parameter extraction procedures are presented using straightforward mathematic calculations. The ground-shield de-embedding structure obtains the best results among the others methods. A small signal device model of CMOS is demonstrated by using these techniques. The second part is the study of spiral inductors. The basic inductance principle is first introduced. Modern planar spiral inductor used on the silicon-based technology is then studied including its parasitic effects, device model, quality factor and the method of improving. Finally, compare the difference with inductance value and quality factor by the measurement of inductors with different specifications. The inductor with mesh deep trench shield in silicon germanium obtains the best quality factor. The third part discussion is the parasitic effect of the PAD and improving method of PAD is proposed. Using the guard ring can reduce the resistance loss and the substrate effects effectively. Since the implementation of radio frequency circuits on silicon plays very important role in the recent novel emerging applications, the request for precise processes, accuracy device models get more and more important. However, the silicon process still has existence of limiting. It’s a goal to use existing process under the major premise of maintaining the cost of manufacture which makes the circuit design accomplish the greatest efficiency.