Existence of the solutions for parabolic problems with a moving source
碩士 === 大同大學 === 應用數學學系(所) === 93 === This paper studies the existence and non-existence of the solution $T(x,t)$ of the nonlinear parabolic problem: [ egin{array}{c} D frac{partial T}{partial t}(x,t)-frac{partial^2T}{partial x^2}(x,t)=delta(x-x_0)F(T(x,t)), 0<x<infty, t>0, T(x,0)=...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2005
|
Online Access: | http://ndltd.ncl.edu.tw/handle/54091764195191537722 |
id |
ndltd-TW-093TTU00507002 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-093TTU005070022015-10-13T13:04:19Z http://ndltd.ncl.edu.tw/handle/54091764195191537722 Existence of the solutions for parabolic problems with a moving source 移動熱源的拋物型問題之討論 Pei-hsuan Chen 陳霈軒 碩士 大同大學 應用數學學系(所) 93 This paper studies the existence and non-existence of the solution $T(x,t)$ of the nonlinear parabolic problem: [ egin{array}{c} D frac{partial T}{partial t}(x,t)-frac{partial^2T}{partial x^2}(x,t)=delta(x-x_0)F(T(x,t)), 0<x<infty, t>0, T(x,0)=widehat{T}geq0, 0<x<infty, T(0,t)=0, end{array} ] where $delta(x-x_0) $ is the Dirac delta distribution, $F(T)$ is a given function with $F(T)>0,F'(T)>0,F'(T)>0$ and $D lim_{T ightarrowinfty}F(T)=infty$, and $widehat{T}(0)=0, widehat{T}(x) ightarrow 0$ as $x ightarrow infty$. The blow-up behavior of the solution will be studied, the effects of the initial position and the velocity of the source related with the blow-up properties will be given. Hon-hung Terence Liu 廖漢雄 2005 學位論文 ; thesis 31 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 大同大學 === 應用數學學系(所) === 93 === This paper studies the existence and non-existence of the solution $T(x,t)$ of the nonlinear parabolic problem:
[ egin{array}{c}
D frac{partial T}{partial t}(x,t)-frac{partial^2T}{partial x^2}(x,t)=delta(x-x_0)F(T(x,t)), 0<x<infty, t>0,
T(x,0)=widehat{T}geq0, 0<x<infty,
T(0,t)=0,
end{array} ]
where $delta(x-x_0) $ is the Dirac delta distribution, $F(T)$ is a given function with $F(T)>0,F'(T)>0,F'(T)>0$ and
$D lim_{T
ightarrowinfty}F(T)=infty$, and $widehat{T}(0)=0, widehat{T}(x)
ightarrow 0$ as $x
ightarrow infty$.
The blow-up behavior of the solution will be studied, the effects of the initial position and the velocity of the source
related with the blow-up properties will be given.
|
author2 |
Hon-hung Terence Liu |
author_facet |
Hon-hung Terence Liu Pei-hsuan Chen 陳霈軒 |
author |
Pei-hsuan Chen 陳霈軒 |
spellingShingle |
Pei-hsuan Chen 陳霈軒 Existence of the solutions for parabolic problems with a moving source |
author_sort |
Pei-hsuan Chen |
title |
Existence of the solutions for parabolic problems with a moving source |
title_short |
Existence of the solutions for parabolic problems with a moving source |
title_full |
Existence of the solutions for parabolic problems with a moving source |
title_fullStr |
Existence of the solutions for parabolic problems with a moving source |
title_full_unstemmed |
Existence of the solutions for parabolic problems with a moving source |
title_sort |
existence of the solutions for parabolic problems with a moving source |
publishDate |
2005 |
url |
http://ndltd.ncl.edu.tw/handle/54091764195191537722 |
work_keys_str_mv |
AT peihsuanchen existenceofthesolutionsforparabolicproblemswithamovingsource AT chénpèixuān existenceofthesolutionsforparabolicproblemswithamovingsource AT peihsuanchen yídòngrèyuándepāowùxíngwèntízhītǎolùn AT chénpèixuān yídòngrèyuándepāowùxíngwèntízhītǎolùn |
_version_ |
1717730409321594880 |