Existence of the solutions for parabolic problems with a moving source

碩士 === 大同大學 === 應用數學學系(所) === 93 === This paper studies the existence and non-existence of the solution $T(x,t)$ of the nonlinear parabolic problem: [ egin{array}{c} D frac{partial T}{partial t}(x,t)-frac{partial^2T}{partial x^2}(x,t)=delta(x-x_0)F(T(x,t)), 0<x<infty, t>0, T(x,0)=...

Full description

Bibliographic Details
Main Authors: Pei-hsuan Chen, 陳霈軒
Other Authors: Hon-hung Terence Liu
Format: Others
Language:en_US
Published: 2005
Online Access:http://ndltd.ncl.edu.tw/handle/54091764195191537722
id ndltd-TW-093TTU00507002
record_format oai_dc
spelling ndltd-TW-093TTU005070022015-10-13T13:04:19Z http://ndltd.ncl.edu.tw/handle/54091764195191537722 Existence of the solutions for parabolic problems with a moving source 移動熱源的拋物型問題之討論 Pei-hsuan Chen 陳霈軒 碩士 大同大學 應用數學學系(所) 93 This paper studies the existence and non-existence of the solution $T(x,t)$ of the nonlinear parabolic problem: [ egin{array}{c} D frac{partial T}{partial t}(x,t)-frac{partial^2T}{partial x^2}(x,t)=delta(x-x_0)F(T(x,t)), 0<x<infty, t>0, T(x,0)=widehat{T}geq0, 0<x<infty, T(0,t)=0, end{array} ] where $delta(x-x_0) $ is the Dirac delta distribution, $F(T)$ is a given function with $F(T)>0,F'(T)>0,F'(T)>0$ and $D lim_{T ightarrowinfty}F(T)=infty$, and $widehat{T}(0)=0, widehat{T}(x) ightarrow 0$ as $x ightarrow infty$. The blow-up behavior of the solution will be studied, the effects of the initial position and the velocity of the source related with the blow-up properties will be given. Hon-hung Terence Liu 廖漢雄 2005 學位論文 ; thesis 31 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 大同大學 === 應用數學學系(所) === 93 === This paper studies the existence and non-existence of the solution $T(x,t)$ of the nonlinear parabolic problem: [ egin{array}{c} D frac{partial T}{partial t}(x,t)-frac{partial^2T}{partial x^2}(x,t)=delta(x-x_0)F(T(x,t)), 0<x<infty, t>0, T(x,0)=widehat{T}geq0, 0<x<infty, T(0,t)=0, end{array} ] where $delta(x-x_0) $ is the Dirac delta distribution, $F(T)$ is a given function with $F(T)>0,F'(T)>0,F'(T)>0$ and $D lim_{T ightarrowinfty}F(T)=infty$, and $widehat{T}(0)=0, widehat{T}(x) ightarrow 0$ as $x ightarrow infty$. The blow-up behavior of the solution will be studied, the effects of the initial position and the velocity of the source related with the blow-up properties will be given.
author2 Hon-hung Terence Liu
author_facet Hon-hung Terence Liu
Pei-hsuan Chen
陳霈軒
author Pei-hsuan Chen
陳霈軒
spellingShingle Pei-hsuan Chen
陳霈軒
Existence of the solutions for parabolic problems with a moving source
author_sort Pei-hsuan Chen
title Existence of the solutions for parabolic problems with a moving source
title_short Existence of the solutions for parabolic problems with a moving source
title_full Existence of the solutions for parabolic problems with a moving source
title_fullStr Existence of the solutions for parabolic problems with a moving source
title_full_unstemmed Existence of the solutions for parabolic problems with a moving source
title_sort existence of the solutions for parabolic problems with a moving source
publishDate 2005
url http://ndltd.ncl.edu.tw/handle/54091764195191537722
work_keys_str_mv AT peihsuanchen existenceofthesolutionsforparabolicproblemswithamovingsource
AT chénpèixuān existenceofthesolutionsforparabolicproblemswithamovingsource
AT peihsuanchen yídòngrèyuándepāowùxíngwèntízhītǎolùn
AT chénpèixuān yídòngrèyuándepāowùxíngwèntízhītǎolùn
_version_ 1717730409321594880