The Study on Carrier Mobility of Organic Material with Transient Electroluminescence Technology

碩士 === 國立清華大學 === 光電工程研究所 === 94 === We measure the delay time using the time-resolved electroluminescence (EL) technology by the time-correlated single photon counting system. We calculate the mobility of the organic material based on the delay time at various applied voltages. We find that by usin...

Full description

Bibliographic Details
Main Authors: Yuan-Yu Hsieh, 謝沅育
Other Authors: Sheng-Fu Horng
Format: Others
Language:zh-TW
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/32868302812230760205
id ndltd-TW-094NTHU5124011
record_format oai_dc
spelling ndltd-TW-094NTHU51240112015-12-16T04:39:04Z http://ndltd.ncl.edu.tw/handle/32868302812230760205 The Study on Carrier Mobility of Organic Material with Transient Electroluminescence Technology 以瞬時光電技術來量測有機材料等新穎半導體之載子遷移率 Yuan-Yu Hsieh 謝沅育 碩士 國立清華大學 光電工程研究所 94 We measure the delay time using the time-resolved electroluminescence (EL) technology by the time-correlated single photon counting system. We calculate the mobility of the organic material based on the delay time at various applied voltages. We find that by using an exponential function to fit the measured transient fluorescence, delay time independent of the counting rates can be obtained. With delay time extracted in the way, better estimate of the mobility can be obtained. In single layer structure, we find that the light emitting due to the defects has the shorter delay time than that due to the singlet exciton. Furthermore, we study the delay time and the mobility of the organic material by changing the processing conditions such as the solvent, the emission layer area, the emission layer thickness and the cathode materials. We find that: (1) the use of xylene as solvent of the emission layer leads to shorter delay than THF. (2) the larger the emission area is, the longer the delay time is. This is attributed to the larger area results in the longer RC delay. However the emission area dosen’t affect the carrier mobility. (3) thicker light emission layer shows higher mobility and shorter RC delay; hence leading to the shorter delay time. (4) different cathode materials (Ca/Al, CsF/Al, and LiF/Ca/Al) results in different mobilities, and the devices evaporated on the cathode, LiF/Ca/Al, shows the highest mobility. In bilayer structure, we also find that the mobility is thickness dependent. However, some of the difficulties in the mobility study based on the bilayer or multilayer structure remained unsolved; further investigation is required. Sheng-Fu Horng Hsin-Fey Meng 洪勝富 孟心飛 2006 學位論文 ; thesis 59 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立清華大學 === 光電工程研究所 === 94 === We measure the delay time using the time-resolved electroluminescence (EL) technology by the time-correlated single photon counting system. We calculate the mobility of the organic material based on the delay time at various applied voltages. We find that by using an exponential function to fit the measured transient fluorescence, delay time independent of the counting rates can be obtained. With delay time extracted in the way, better estimate of the mobility can be obtained. In single layer structure, we find that the light emitting due to the defects has the shorter delay time than that due to the singlet exciton. Furthermore, we study the delay time and the mobility of the organic material by changing the processing conditions such as the solvent, the emission layer area, the emission layer thickness and the cathode materials. We find that: (1) the use of xylene as solvent of the emission layer leads to shorter delay than THF. (2) the larger the emission area is, the longer the delay time is. This is attributed to the larger area results in the longer RC delay. However the emission area dosen’t affect the carrier mobility. (3) thicker light emission layer shows higher mobility and shorter RC delay; hence leading to the shorter delay time. (4) different cathode materials (Ca/Al, CsF/Al, and LiF/Ca/Al) results in different mobilities, and the devices evaporated on the cathode, LiF/Ca/Al, shows the highest mobility. In bilayer structure, we also find that the mobility is thickness dependent. However, some of the difficulties in the mobility study based on the bilayer or multilayer structure remained unsolved; further investigation is required.
author2 Sheng-Fu Horng
author_facet Sheng-Fu Horng
Yuan-Yu Hsieh
謝沅育
author Yuan-Yu Hsieh
謝沅育
spellingShingle Yuan-Yu Hsieh
謝沅育
The Study on Carrier Mobility of Organic Material with Transient Electroluminescence Technology
author_sort Yuan-Yu Hsieh
title The Study on Carrier Mobility of Organic Material with Transient Electroluminescence Technology
title_short The Study on Carrier Mobility of Organic Material with Transient Electroluminescence Technology
title_full The Study on Carrier Mobility of Organic Material with Transient Electroluminescence Technology
title_fullStr The Study on Carrier Mobility of Organic Material with Transient Electroluminescence Technology
title_full_unstemmed The Study on Carrier Mobility of Organic Material with Transient Electroluminescence Technology
title_sort study on carrier mobility of organic material with transient electroluminescence technology
publishDate 2006
url http://ndltd.ncl.edu.tw/handle/32868302812230760205
work_keys_str_mv AT yuanyuhsieh thestudyoncarriermobilityoforganicmaterialwithtransientelectroluminescencetechnology
AT xièyuányù thestudyoncarriermobilityoforganicmaterialwithtransientelectroluminescencetechnology
AT yuanyuhsieh yǐshùnshíguāngdiànjìshùláiliàngcèyǒujīcáiliàoděngxīnyǐngbàndǎotǐzhīzàiziqiānyílǜ
AT xièyuányù yǐshùnshíguāngdiànjìshùláiliàngcèyǒujīcáiliàoděngxīnyǐngbàndǎotǐzhīzàiziqiānyílǜ
AT yuanyuhsieh studyoncarriermobilityoforganicmaterialwithtransientelectroluminescencetechnology
AT xièyuányù studyoncarriermobilityoforganicmaterialwithtransientelectroluminescencetechnology
_version_ 1718151954445631488