Studies on the Antioxidative Components of Longan (Dimocarpus longan Lour.) Flower

碩士 === 國立臺灣大學 === 食品科技研究所 === 94 === Atherosclerosis is the major cause of cardiovascular disease, and the oxidation of low density lipoprotein (LDL) cholesterol is the important step to initiate atherosclerosis. Antioxidants can increase the resistance against oxidative damage, so the supplementati...

Full description

Bibliographic Details
Main Authors: Meng-Chieh Hsieh, 謝孟潔
Other Authors: 孫璐西
Format: Others
Language:zh-TW
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/46309767382370774974
id ndltd-TW-094NTU05252031
record_format oai_dc
spelling ndltd-TW-094NTU052520312015-12-16T04:38:38Z http://ndltd.ncl.edu.tw/handle/46309767382370774974 Studies on the Antioxidative Components of Longan (Dimocarpus longan Lour.) Flower 龍眼花抗氧化成分之研究 Meng-Chieh Hsieh 謝孟潔 碩士 國立臺灣大學 食品科技研究所 94 Atherosclerosis is the major cause of cardiovascular disease, and the oxidation of low density lipoprotein (LDL) cholesterol is the important step to initiate atherosclerosis. Antioxidants can increase the resistance against oxidative damage, so the supplementation of food with antioxidants may help prevent the incidence of atherosclerosis. Previous year study in our laboratory has shown that Longan (Dimocarpus longan Lour.) flower had good antioxidative activity. Therefore, the objective of this study is to conduct antioxidant activity-guided separation and purification of Longan flower by the major antioxidative assay, the inhibition of Cu2+-induced human LDL oxidation, and to identify the effective compounds. After liquid-liquid partition of Longan flower methanol extract with n-hexane, ethyl acetate, n-butanol and water, the ethyl acetate fraction showed the best antioxidant activity. The EC50 value of the ethyl acetate fraction in scavenging DPPH radicals was 5.28 ± 1.14 μg/mL, and its effect of delaying LDL oxidation is 1.14 times better than Trolox at the same concentration level (1μg/mL). Besides, the ethyl acetate fraction had the highest contents of total polyphenol (701.7 ± 29.3 mg gallic acid /g dry weight of sample) and flavonoid (213.7 ± 14.8 mg catechin equivalent /g dry weight of sample). Silica gel chromatography was employed to fractionate the ethyl acetate fraction of Longan flower methanol extract, and twenty sub-fractions were obtained. DPPH assay showed that the sub-fractions with medium to high polarity had better antioxidative activities. Result of ORAC assay revealed that F8~11 were the more effective sub-fractions and F9 (eluted by ethyl acetate/n-hexane=60/40, v/v) gave the highest ORAC value (25.07 ± 4.08 Trolox equivalent). As for the effect of Cu2+-induced oxidation of human LDL, F8~11 also showed better effect in delaying LDL oxidation. Among them, F10 (eluted by ethyl acetate/n-hexane=70/30, v/v), which had superior effect, was 1.72 times better than Trolox at the same concentration level (1μg/mL). Further analysis of these sub-fractions showed that F9 contained the hightest amounts of total polyphenol (970.4 ± 11.2 mg gallic acid /g dry weight of sample) and total flavonoid (732.9 ± 19.0 mg catechin /g dry weight of sample). The trends of total flavonoid contents and the antioxidative activities of the four sub-fractions (F8~11) were similar, we therefore supposed that the antioxidative activity of Longan flower was highly related to its total flavonoid content or composition. There was only one major compound present in F9 by HPLC analysis and it was identified as (-)-epicatechin by spectrometric analysis of IR, MS, UV-Vis, 1H-NMR, 13C-NMR and 2D-NMR. After separating F10 by Sephadex LH-20, two major components were identified as (-)-epicatechin and proanthocyanidin A2. Both of them had superior effect in delaying LDL oxidation, and the lag time of each compound was 1.95 ( (-)-epicatechin ) and 2.04 ( proanthocyanidin A2 ) times better than Trolox at the same concentration level (0.5μg/mL). The contents of (-)-epicatechin and proanthocyanidin A2 in Longan flower were quantified by HPLC to be 5.58 and 1.70 mg/g dry weight, respectively. This study showed that Longan flower contained components with excellent activity, it thus has good potential to be developed as a functional food. 孫璐西 2006 學位論文 ; thesis 134 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立臺灣大學 === 食品科技研究所 === 94 === Atherosclerosis is the major cause of cardiovascular disease, and the oxidation of low density lipoprotein (LDL) cholesterol is the important step to initiate atherosclerosis. Antioxidants can increase the resistance against oxidative damage, so the supplementation of food with antioxidants may help prevent the incidence of atherosclerosis. Previous year study in our laboratory has shown that Longan (Dimocarpus longan Lour.) flower had good antioxidative activity. Therefore, the objective of this study is to conduct antioxidant activity-guided separation and purification of Longan flower by the major antioxidative assay, the inhibition of Cu2+-induced human LDL oxidation, and to identify the effective compounds. After liquid-liquid partition of Longan flower methanol extract with n-hexane, ethyl acetate, n-butanol and water, the ethyl acetate fraction showed the best antioxidant activity. The EC50 value of the ethyl acetate fraction in scavenging DPPH radicals was 5.28 ± 1.14 μg/mL, and its effect of delaying LDL oxidation is 1.14 times better than Trolox at the same concentration level (1μg/mL). Besides, the ethyl acetate fraction had the highest contents of total polyphenol (701.7 ± 29.3 mg gallic acid /g dry weight of sample) and flavonoid (213.7 ± 14.8 mg catechin equivalent /g dry weight of sample). Silica gel chromatography was employed to fractionate the ethyl acetate fraction of Longan flower methanol extract, and twenty sub-fractions were obtained. DPPH assay showed that the sub-fractions with medium to high polarity had better antioxidative activities. Result of ORAC assay revealed that F8~11 were the more effective sub-fractions and F9 (eluted by ethyl acetate/n-hexane=60/40, v/v) gave the highest ORAC value (25.07 ± 4.08 Trolox equivalent). As for the effect of Cu2+-induced oxidation of human LDL, F8~11 also showed better effect in delaying LDL oxidation. Among them, F10 (eluted by ethyl acetate/n-hexane=70/30, v/v), which had superior effect, was 1.72 times better than Trolox at the same concentration level (1μg/mL). Further analysis of these sub-fractions showed that F9 contained the hightest amounts of total polyphenol (970.4 ± 11.2 mg gallic acid /g dry weight of sample) and total flavonoid (732.9 ± 19.0 mg catechin /g dry weight of sample). The trends of total flavonoid contents and the antioxidative activities of the four sub-fractions (F8~11) were similar, we therefore supposed that the antioxidative activity of Longan flower was highly related to its total flavonoid content or composition. There was only one major compound present in F9 by HPLC analysis and it was identified as (-)-epicatechin by spectrometric analysis of IR, MS, UV-Vis, 1H-NMR, 13C-NMR and 2D-NMR. After separating F10 by Sephadex LH-20, two major components were identified as (-)-epicatechin and proanthocyanidin A2. Both of them had superior effect in delaying LDL oxidation, and the lag time of each compound was 1.95 ( (-)-epicatechin ) and 2.04 ( proanthocyanidin A2 ) times better than Trolox at the same concentration level (0.5μg/mL). The contents of (-)-epicatechin and proanthocyanidin A2 in Longan flower were quantified by HPLC to be 5.58 and 1.70 mg/g dry weight, respectively. This study showed that Longan flower contained components with excellent activity, it thus has good potential to be developed as a functional food.
author2 孫璐西
author_facet 孫璐西
Meng-Chieh Hsieh
謝孟潔
author Meng-Chieh Hsieh
謝孟潔
spellingShingle Meng-Chieh Hsieh
謝孟潔
Studies on the Antioxidative Components of Longan (Dimocarpus longan Lour.) Flower
author_sort Meng-Chieh Hsieh
title Studies on the Antioxidative Components of Longan (Dimocarpus longan Lour.) Flower
title_short Studies on the Antioxidative Components of Longan (Dimocarpus longan Lour.) Flower
title_full Studies on the Antioxidative Components of Longan (Dimocarpus longan Lour.) Flower
title_fullStr Studies on the Antioxidative Components of Longan (Dimocarpus longan Lour.) Flower
title_full_unstemmed Studies on the Antioxidative Components of Longan (Dimocarpus longan Lour.) Flower
title_sort studies on the antioxidative components of longan (dimocarpus longan lour.) flower
publishDate 2006
url http://ndltd.ncl.edu.tw/handle/46309767382370774974
work_keys_str_mv AT mengchiehhsieh studiesontheantioxidativecomponentsoflongandimocarpuslonganlourflower
AT xièmèngjié studiesontheantioxidativecomponentsoflongandimocarpuslonganlourflower
AT mengchiehhsieh lóngyǎnhuākàngyǎnghuàchéngfēnzhīyánjiū
AT xièmèngjié lóngyǎnhuākàngyǎnghuàchéngfēnzhīyánjiū
_version_ 1718150909899309056