Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems
碩士 === 元智大學 === 電機工程學系 === 95 === This thesis focus on an adaptive wavelet neural network (AWNN) controller and it is applied to the multi-input multi-output systems. The proposed WNN system is comprised of a principle controller and a compensation controller. The principle controller is an identifi...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2007
|
Online Access: | http://ndltd.ncl.edu.tw/handle/61008440293064209023 |
id |
ndltd-TW-095YZU05442008 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-095YZU054420082016-05-23T04:17:52Z http://ndltd.ncl.edu.tw/handle/61008440293064209023 Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems 智慧型強健小波類神經網路控制器設計用於多輸入多輸出非線性系統 Yao-Wei Wen 溫曜亹 碩士 元智大學 電機工程學系 95 This thesis focus on an adaptive wavelet neural network (AWNN) controller and it is applied to the multi-input multi-output systems. The proposed WNN system is comprised of a principle controller and a compensation controller. The principle controller is an identifier using AWNN to estimate the uncertain nonlinear function of the MIMO system. An controller is used as the compensation controller to enhance the robustness. In Chapter 3, we add the sliding-mode technique into the AWNN controller to enhance the effectiveness. The simulation results demonstrate the effectiveness of proposed controller for the MIMO systems. Chih-Min Lin 林志民 2007 學位論文 ; thesis 62 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 元智大學 === 電機工程學系 === 95 === This thesis focus on an adaptive wavelet neural network (AWNN) controller and it is applied to the multi-input multi-output systems. The proposed WNN system is comprised of a principle controller and a compensation controller. The principle controller is an identifier using AWNN to estimate the uncertain nonlinear function of the MIMO system. An controller is used as the compensation controller to enhance the robustness. In Chapter 3, we add the sliding-mode technique into the AWNN controller to enhance the effectiveness. The simulation results demonstrate the effectiveness of proposed controller for the MIMO systems.
|
author2 |
Chih-Min Lin |
author_facet |
Chih-Min Lin Yao-Wei Wen 溫曜亹 |
author |
Yao-Wei Wen 溫曜亹 |
spellingShingle |
Yao-Wei Wen 溫曜亹 Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems |
author_sort |
Yao-Wei Wen |
title |
Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems |
title_short |
Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems |
title_full |
Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems |
title_fullStr |
Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems |
title_full_unstemmed |
Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems |
title_sort |
intelligent robust wavelet neural network control for mimo nonlinear systems |
publishDate |
2007 |
url |
http://ndltd.ncl.edu.tw/handle/61008440293064209023 |
work_keys_str_mv |
AT yaoweiwen intelligentrobustwaveletneuralnetworkcontrolformimononlinearsystems AT wēnyàomén intelligentrobustwaveletneuralnetworkcontrolformimononlinearsystems AT yaoweiwen zhìhuìxíngqiángjiànxiǎobōlèishénjīngwǎnglùkòngzhìqìshèjìyòngyúduōshūrùduōshūchūfēixiànxìngxìtǒng AT wēnyàomén zhìhuìxíngqiángjiànxiǎobōlèishénjīngwǎnglùkòngzhìqìshèjìyòngyúduōshūrùduōshūchūfēixiànxìngxìtǒng |
_version_ |
1718278375792967680 |