Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems

碩士 === 元智大學 === 電機工程學系 === 95 === This thesis focus on an adaptive wavelet neural network (AWNN) controller and it is applied to the multi-input multi-output systems. The proposed WNN system is comprised of a principle controller and a compensation controller. The principle controller is an identifi...

Full description

Bibliographic Details
Main Authors: Yao-Wei Wen, 溫曜亹
Other Authors: Chih-Min Lin
Format: Others
Language:en_US
Published: 2007
Online Access:http://ndltd.ncl.edu.tw/handle/61008440293064209023
id ndltd-TW-095YZU05442008
record_format oai_dc
spelling ndltd-TW-095YZU054420082016-05-23T04:17:52Z http://ndltd.ncl.edu.tw/handle/61008440293064209023 Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems 智慧型強健小波類神經網路控制器設計用於多輸入多輸出非線性系統 Yao-Wei Wen 溫曜亹 碩士 元智大學 電機工程學系 95 This thesis focus on an adaptive wavelet neural network (AWNN) controller and it is applied to the multi-input multi-output systems. The proposed WNN system is comprised of a principle controller and a compensation controller. The principle controller is an identifier using AWNN to estimate the uncertain nonlinear function of the MIMO system. An controller is used as the compensation controller to enhance the robustness. In Chapter 3, we add the sliding-mode technique into the AWNN controller to enhance the effectiveness. The simulation results demonstrate the effectiveness of proposed controller for the MIMO systems. Chih-Min Lin 林志民 2007 學位論文 ; thesis 62 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 元智大學 === 電機工程學系 === 95 === This thesis focus on an adaptive wavelet neural network (AWNN) controller and it is applied to the multi-input multi-output systems. The proposed WNN system is comprised of a principle controller and a compensation controller. The principle controller is an identifier using AWNN to estimate the uncertain nonlinear function of the MIMO system. An controller is used as the compensation controller to enhance the robustness. In Chapter 3, we add the sliding-mode technique into the AWNN controller to enhance the effectiveness. The simulation results demonstrate the effectiveness of proposed controller for the MIMO systems.
author2 Chih-Min Lin
author_facet Chih-Min Lin
Yao-Wei Wen
溫曜亹
author Yao-Wei Wen
溫曜亹
spellingShingle Yao-Wei Wen
溫曜亹
Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems
author_sort Yao-Wei Wen
title Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems
title_short Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems
title_full Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems
title_fullStr Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems
title_full_unstemmed Intelligent Robust Wavelet Neural Network Control for MIMO Nonlinear Systems
title_sort intelligent robust wavelet neural network control for mimo nonlinear systems
publishDate 2007
url http://ndltd.ncl.edu.tw/handle/61008440293064209023
work_keys_str_mv AT yaoweiwen intelligentrobustwaveletneuralnetworkcontrolformimononlinearsystems
AT wēnyàomén intelligentrobustwaveletneuralnetworkcontrolformimononlinearsystems
AT yaoweiwen zhìhuìxíngqiángjiànxiǎobōlèishénjīngwǎnglùkòngzhìqìshèjìyòngyúduōshūrùduōshūchūfēixiànxìngxìtǒng
AT wēnyàomén zhìhuìxíngqiángjiànxiǎobōlèishénjīngwǎnglùkòngzhìqìshèjìyòngyúduōshūrùduōshūchūfēixiànxìngxìtǒng
_version_ 1718278375792967680