The connection between the functions of Riemann zeta and Bernoulli Number

碩士 === 國立臺中教育大學 === 數學教育學系 === 96 === This research hung over from the extended functions for the sum of powers of consecutive integers, we colleted the literatures of the related research about the functions of Riemann zeta and Bernoulli Number, both newly interpreted and predigested the properti...

Full description

Bibliographic Details
Main Authors: Chih -Shiuan Liu, 劉志璿
Other Authors: Tao-Ming Wang
Format: Others
Language:zh-TW
Published: 2008
Online Access:http://ndltd.ncl.edu.tw/handle/17154599310613619902
id ndltd-TW-096NTCTC480012
record_format oai_dc
spelling ndltd-TW-096NTCTC4800122015-10-13T11:31:59Z http://ndltd.ncl.edu.tw/handle/17154599310613619902 The connection between the functions of Riemann zeta and Bernoulli Number 黎曼-傑塔函數與伯努力數的關聯 Chih -Shiuan Liu 劉志璿 碩士 國立臺中教育大學 數學教育學系 96 This research hung over from the extended functions for the sum of powers of consecutive integers, we colleted the literatures of the related research about the functions of Riemann zeta and Bernoulli Number, both newly interpreted and predigested the properties of the functions of Riemann zeta and Bernoulli Number. Thus we built the connection between the functions of Riemann zeta and Bernoulli Number, according to \zeta(2 k)=(-1)^{k-1} 2^{2k-1} \frac{B_{2k} \pi^{2k}}{(2k)!}, \ k \in \mathbb{N},and S_{2k}^{\prime}(-1)=\frac{(-1)^{k-1} (2k)!}{2^{2k-1} (\pi)^{2k}}\zeta(2k), S_{2k+1}^{\prime}(-1)=0,Take the function of Riemann zeta as bridge, we find that S_{2k}^{\prime}(-1)=B_{2k},B_{2k}=\frac{1}{2k+1} \left \{ C_{2k}^{2k+1} S_{1}^{\prime}(-1)+ \sum_{i=1}^{k} C_{2i+1}^{2k+1} S_{2k-2i}^{\prime}(-1) \right \},where $S_k^{\prime}(x)$ denotes the first derivative of $S_k(x)$ for each positive integer $k$. Tao-Ming Wang Feng-Rung Hu 王道明 胡豐榮 2008 學位論文 ; thesis 84 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立臺中教育大學 === 數學教育學系 === 96 === This research hung over from the extended functions for the sum of powers of consecutive integers, we colleted the literatures of the related research about the functions of Riemann zeta and Bernoulli Number, both newly interpreted and predigested the properties of the functions of Riemann zeta and Bernoulli Number. Thus we built the connection between the functions of Riemann zeta and Bernoulli Number, according to \zeta(2 k)=(-1)^{k-1} 2^{2k-1} \frac{B_{2k} \pi^{2k}}{(2k)!}, \ k \in \mathbb{N},and S_{2k}^{\prime}(-1)=\frac{(-1)^{k-1} (2k)!}{2^{2k-1} (\pi)^{2k}}\zeta(2k), S_{2k+1}^{\prime}(-1)=0,Take the function of Riemann zeta as bridge, we find that S_{2k}^{\prime}(-1)=B_{2k},B_{2k}=\frac{1}{2k+1} \left \{ C_{2k}^{2k+1} S_{1}^{\prime}(-1)+ \sum_{i=1}^{k} C_{2i+1}^{2k+1} S_{2k-2i}^{\prime}(-1) \right \},where $S_k^{\prime}(x)$ denotes the first derivative of $S_k(x)$ for each positive integer $k$.
author2 Tao-Ming Wang
author_facet Tao-Ming Wang
Chih -Shiuan Liu
劉志璿
author Chih -Shiuan Liu
劉志璿
spellingShingle Chih -Shiuan Liu
劉志璿
The connection between the functions of Riemann zeta and Bernoulli Number
author_sort Chih -Shiuan Liu
title The connection between the functions of Riemann zeta and Bernoulli Number
title_short The connection between the functions of Riemann zeta and Bernoulli Number
title_full The connection between the functions of Riemann zeta and Bernoulli Number
title_fullStr The connection between the functions of Riemann zeta and Bernoulli Number
title_full_unstemmed The connection between the functions of Riemann zeta and Bernoulli Number
title_sort connection between the functions of riemann zeta and bernoulli number
publishDate 2008
url http://ndltd.ncl.edu.tw/handle/17154599310613619902
work_keys_str_mv AT chihshiuanliu theconnectionbetweenthefunctionsofriemannzetaandbernoullinumber
AT liúzhìxuán theconnectionbetweenthefunctionsofriemannzetaandbernoullinumber
AT chihshiuanliu límànjiétǎhánshùyǔbónǔlìshùdeguānlián
AT liúzhìxuán límànjiétǎhánshùyǔbónǔlìshùdeguānlián
AT chihshiuanliu connectionbetweenthefunctionsofriemannzetaandbernoullinumber
AT liúzhìxuán connectionbetweenthefunctionsofriemannzetaandbernoullinumber
_version_ 1716846925828849664