The dynamics of a single-mode Nd:YVO4/Cr4+:YAG laser

碩士 === 淡江大學 === 物理學系碩士班 === 96 === The main purpose of the thesis study is to investigate the single mode operation of a Nd:YVO4/Cr4+:YAG laser; especially the changes which occur during the transition between continuous wave (cw) and pulsed modes of operation. Theoretically, the standing wave effec...

Full description

Bibliographic Details
Main Authors: Kuo-Ting Huang, 黃國鼎
Other Authors: Chen-Yau Tang
Format: Others
Language:zh-TW
Published: 2008
Online Access:http://ndltd.ncl.edu.tw/handle/86106994506841571434
id ndltd-TW-096TKU05198004
record_format oai_dc
spelling ndltd-TW-096TKU051980042016-05-18T04:13:37Z http://ndltd.ncl.edu.tw/handle/86106994506841571434 The dynamics of a single-mode Nd:YVO4/Cr4+:YAG laser 單模Nd:YVO4/Cr4+:YAG雷射動力學之研究 Kuo-Ting Huang 黃國鼎 碩士 淡江大學 物理學系碩士班 96 The main purpose of the thesis study is to investigate the single mode operation of a Nd:YVO4/Cr4+:YAG laser; especially the changes which occur during the transition between continuous wave (cw) and pulsed modes of operation. Theoretically, the standing wave effect in laser cavity is considered in evaluating the overlap efficiency so that a quantitative explanation to the slope efficiency can be made. In the experimental part, we used diode laser as our pump light source. A folded laser cavity was formed with a Nd:YVO4 laser crystal (serving as a terminal mirror), a thin-film polarizer, a KTP crystal and a output coupler. The KTP crystal and the polarizer function as a mode-selector. We found that stable single-mode operation can be easily achieved even when the cavity length is 18-cm long. At a pump power of 570 mw, an output power of 94 mw was obtained, and the vertical to horizontal polarization ratio is about 200:1. As far as the threshold pump power and slope efficiency of the laser are concerned, our experiments show very good agreement with theory. As the length of the folded cavity was changed to 8 centimeters, a Cr4+:YAG crystal was used as a saturable absorber. By changing the pump power, we measured the spectrum of the laser output which underwent a transition from cw to pulsed operation modes. We found that in the course of the transition, the laser does not change in its wavelength, and its output power still keeps the same linear relationship with the pump power. Thus, the mechanism of the transition may be simply attributed to the cross modulation between the intra-cavity laser intensity and the concentration of the absorbing centers within the Cr4+:YAG crystal. Chen-Yau Tang 唐建堯 2008 學位論文 ; thesis 53 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 淡江大學 === 物理學系碩士班 === 96 === The main purpose of the thesis study is to investigate the single mode operation of a Nd:YVO4/Cr4+:YAG laser; especially the changes which occur during the transition between continuous wave (cw) and pulsed modes of operation. Theoretically, the standing wave effect in laser cavity is considered in evaluating the overlap efficiency so that a quantitative explanation to the slope efficiency can be made. In the experimental part, we used diode laser as our pump light source. A folded laser cavity was formed with a Nd:YVO4 laser crystal (serving as a terminal mirror), a thin-film polarizer, a KTP crystal and a output coupler. The KTP crystal and the polarizer function as a mode-selector. We found that stable single-mode operation can be easily achieved even when the cavity length is 18-cm long. At a pump power of 570 mw, an output power of 94 mw was obtained, and the vertical to horizontal polarization ratio is about 200:1. As far as the threshold pump power and slope efficiency of the laser are concerned, our experiments show very good agreement with theory. As the length of the folded cavity was changed to 8 centimeters, a Cr4+:YAG crystal was used as a saturable absorber. By changing the pump power, we measured the spectrum of the laser output which underwent a transition from cw to pulsed operation modes. We found that in the course of the transition, the laser does not change in its wavelength, and its output power still keeps the same linear relationship with the pump power. Thus, the mechanism of the transition may be simply attributed to the cross modulation between the intra-cavity laser intensity and the concentration of the absorbing centers within the Cr4+:YAG crystal.
author2 Chen-Yau Tang
author_facet Chen-Yau Tang
Kuo-Ting Huang
黃國鼎
author Kuo-Ting Huang
黃國鼎
spellingShingle Kuo-Ting Huang
黃國鼎
The dynamics of a single-mode Nd:YVO4/Cr4+:YAG laser
author_sort Kuo-Ting Huang
title The dynamics of a single-mode Nd:YVO4/Cr4+:YAG laser
title_short The dynamics of a single-mode Nd:YVO4/Cr4+:YAG laser
title_full The dynamics of a single-mode Nd:YVO4/Cr4+:YAG laser
title_fullStr The dynamics of a single-mode Nd:YVO4/Cr4+:YAG laser
title_full_unstemmed The dynamics of a single-mode Nd:YVO4/Cr4+:YAG laser
title_sort dynamics of a single-mode nd:yvo4/cr4+:yag laser
publishDate 2008
url http://ndltd.ncl.edu.tw/handle/86106994506841571434
work_keys_str_mv AT kuotinghuang thedynamicsofasinglemodendyvo4cr4yaglaser
AT huángguódǐng thedynamicsofasinglemodendyvo4cr4yaglaser
AT kuotinghuang dānmóndyvo4cr4yagléishèdònglìxuézhīyánjiū
AT huángguódǐng dānmóndyvo4cr4yagléishèdònglìxuézhīyánjiū
AT kuotinghuang dynamicsofasinglemodendyvo4cr4yaglaser
AT huángguódǐng dynamicsofasinglemodendyvo4cr4yaglaser
_version_ 1718271496702394368