Design and Implementation of a Full Digital Single-Stage Photovoltaic Lighting System

碩士 === 清雲科技大學 === 電機工程系所 === 97 === This paper presents a digital single-stage power converter for photovoltaic energy conversion application. The presented power converter consists of a boost type resonant circuit from which both DC and AC outputs are provided. The DC output is used to charge batte...

Full description

Bibliographic Details
Main Authors: Yu-Ming Yeah, 葉鈺明
Other Authors: 吳黎明
Format: Others
Language:zh-TW
Online Access:http://ndltd.ncl.edu.tw/handle/61334992275771857573
id ndltd-TW-097CYU05442013
record_format oai_dc
spelling ndltd-TW-097CYU054420132016-05-02T04:11:12Z http://ndltd.ncl.edu.tw/handle/61334992275771857573 Design and Implementation of a Full Digital Single-Stage Photovoltaic Lighting System 全數位化單級式太陽能照明系統之研製 Yu-Ming Yeah 葉鈺明 碩士 清雲科技大學 電機工程系所 97 This paper presents a digital single-stage power converter for photovoltaic energy conversion application. The presented power converter consists of a boost type resonant circuit from which both DC and AC outputs are provided. The DC output is used to charge batteries and the AC output is applied for lighting purpose. With the conditions of continuous conduction and inductive load, the switches in the boost resonant converter can be turned on with ZVS. The advantages of the proposed boost resonant converter include simple structure, multiple outputs, and high energy efficiency. The system uses the PIC18F452 microcontroller as the core control unit. The maximum power point tracking control and battery charge-discharge controls are all implemented in the single unit. The system utilizes the duty cycle modulation in the day time to control the maximum power point tracking and battery charge, and the frequency modulation in the night time to control the battery discharge for lighting fluorescent lamps. All the control algorithms finished in the same microcontroller result in simple control mechanism and circuit cost reduction. Apart from theoretical analysis, design and computer simulation, an experimental prototype converter with power output 90W is constructed. The performance of the system loaded with battery (12V/3Ah x 3 lead acid) and fluorescent lamps (T5/35W x 2) are measured. The experimental outcomes from different operation modes are found in good agreement with theoretical analysis and design. The energy efficiency of the converter when operating in charge mode is 86.63%, and operating in discharge mode is 90.26%. 吳黎明 學位論文 ; thesis 119 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 清雲科技大學 === 電機工程系所 === 97 === This paper presents a digital single-stage power converter for photovoltaic energy conversion application. The presented power converter consists of a boost type resonant circuit from which both DC and AC outputs are provided. The DC output is used to charge batteries and the AC output is applied for lighting purpose. With the conditions of continuous conduction and inductive load, the switches in the boost resonant converter can be turned on with ZVS. The advantages of the proposed boost resonant converter include simple structure, multiple outputs, and high energy efficiency. The system uses the PIC18F452 microcontroller as the core control unit. The maximum power point tracking control and battery charge-discharge controls are all implemented in the single unit. The system utilizes the duty cycle modulation in the day time to control the maximum power point tracking and battery charge, and the frequency modulation in the night time to control the battery discharge for lighting fluorescent lamps. All the control algorithms finished in the same microcontroller result in simple control mechanism and circuit cost reduction. Apart from theoretical analysis, design and computer simulation, an experimental prototype converter with power output 90W is constructed. The performance of the system loaded with battery (12V/3Ah x 3 lead acid) and fluorescent lamps (T5/35W x 2) are measured. The experimental outcomes from different operation modes are found in good agreement with theoretical analysis and design. The energy efficiency of the converter when operating in charge mode is 86.63%, and operating in discharge mode is 90.26%.
author2 吳黎明
author_facet 吳黎明
Yu-Ming Yeah
葉鈺明
author Yu-Ming Yeah
葉鈺明
spellingShingle Yu-Ming Yeah
葉鈺明
Design and Implementation of a Full Digital Single-Stage Photovoltaic Lighting System
author_sort Yu-Ming Yeah
title Design and Implementation of a Full Digital Single-Stage Photovoltaic Lighting System
title_short Design and Implementation of a Full Digital Single-Stage Photovoltaic Lighting System
title_full Design and Implementation of a Full Digital Single-Stage Photovoltaic Lighting System
title_fullStr Design and Implementation of a Full Digital Single-Stage Photovoltaic Lighting System
title_full_unstemmed Design and Implementation of a Full Digital Single-Stage Photovoltaic Lighting System
title_sort design and implementation of a full digital single-stage photovoltaic lighting system
url http://ndltd.ncl.edu.tw/handle/61334992275771857573
work_keys_str_mv AT yumingyeah designandimplementationofafulldigitalsinglestagephotovoltaiclightingsystem
AT yèyùmíng designandimplementationofafulldigitalsinglestagephotovoltaiclightingsystem
AT yumingyeah quánshùwèihuàdānjíshìtàiyángnéngzhàomíngxìtǒngzhīyánzhì
AT yèyùmíng quánshùwèihuàdānjíshìtàiyángnéngzhàomíngxìtǒngzhīyánzhì
_version_ 1718253523569737728