Application of nanosurface to modulate growth of osteoblasts and designing of artificial implants

碩士 === 國立交通大學 === 奈米科技研究所 === 97 === Microstructure that mimics extracellular substratum promotes cell growth and differentiation while cellular reaction to nanostructure is poorly defined. To evaluate modulating ability of nano-scaled surface, MG63 osteoblasts were grown onto nanodot arrays with do...

Full description

Bibliographic Details
Main Authors: Tai, Shih-Ming, 戴世明
Other Authors: Huang, Gue-Wha Steven
Format: Others
Language:en_US
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/25834134506538437194
Description
Summary:碩士 === 國立交通大學 === 奈米科技研究所 === 97 === Microstructure that mimics extracellular substratum promotes cell growth and differentiation while cellular reaction to nanostructure is poorly defined. To evaluate modulating ability of nano-scaled surface, MG63 osteoblasts were grown onto nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell proliferation, morphology, adhesion, cytoskeleton, and mineralization were evaluated. Nanodot with 50-nm in diameter behaved the best in all evaluation. Four different types of dental implants, Uncoated, TPS, HA, and Nano Tite, were characterized by electron microscope and subjected to in vitro and clinical test. Here we show that nanostructure is capable of modulating the in vitro growth of osteoblasts at approximately 50-nm in diameter. Best clinical outcome for dental implants with nanostructure of similar dimension (HA) behaves the best compared to nanoscaled structure (Uncoated and TPS) and undefined structure (Nano Tite). We have fabricated a nanodevice composed of a matrix of 9 nanodot arrays with various dot sizes ranging from flat surface, 10-nm, 50-nm, 100-nm, and 200-nm. HELA, C33A, ES2, PA-1, TOV-112D, TOV-21G, MG63, and NIH-3T3 cells were seeded on the device and cultured for 3 days. Cell density was counted to examine the proliferation of cells. Scanning electron microscopy (SEM) was performed to assess the morphological change of cells. To evaluate cell adhesion and cytoskeleton reorganization, immunostaining specific to vinculin and actin filaments was performed. The scores of cell proliferation, morphology, distribution of focal adhesions, and cytoskeleton organization were obtained. We were able to distinguish the invasive ability of HELA versus later-staged C33A. Ovarian cancer cell lines (ES2, PA-1, TOV-112D, and TOV-21G) also exhibited differential growth parameters which are associated with the cell type, grade, and stage. Modulation for the growth of MG63 was also achieved. We have established a platform which can assess basic parameters for cell growth. The simplified fabrication process ensured mass production and cost down. Apparently, the device was capable of distinguishing cancer cell line of various stages and also provided basic designing parameters for artificial implants. Our device will serve as a convenient and fast tool for tissue engineering and cancer treatment.