Normal Approximation for Random Vectors

碩士 === 國立高雄大學 === 統計學研究所 === 97 === Unlike the Stein's method introduced in his celebrated paper\cite{S}, we consider the following alternative Stein's equation \begin{equation}\label{se1a} F''(w)-wF'(w)=\tilde{h}, \end{equation} where $\tilde{h}:=-\mathbb{E}h(Z)$ and $Z$ is...

Full description

Bibliographic Details
Main Authors: Ting-Ting Chuang, 莊婷婷
Other Authors: Yuh-Jia Lee
Format: Others
Language:en_US
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/14693461166527256746
id ndltd-TW-097NUK05337011
record_format oai_dc
spelling ndltd-TW-097NUK053370112016-06-22T04:13:45Z http://ndltd.ncl.edu.tw/handle/14693461166527256746 Normal Approximation for Random Vectors 隨機向量之常態逼近 Ting-Ting Chuang 莊婷婷 碩士 國立高雄大學 統計學研究所 97 Unlike the Stein's method introduced in his celebrated paper\cite{S}, we consider the following alternative Stein's equation \begin{equation}\label{se1a} F''(w)-wF'(w)=\tilde{h}, \end{equation} where $\tilde{h}:=-\mathbb{E}h(Z)$ and $Z$ is a standard normal distributed random variable. The corresponding Stein identity now becomes \[ \mathbb{E}[F''(W)]=\mathbb{E}[WF'(W)], \] which also characterized the standard normal random variable as well. The solution of (\ref{se1a}) $F=F_{\tilde{h}}$ is given by \begin{eqnarray}\label{sola} F_{\tilde{h}}(w)=\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-y^2/2}dy dt. \end{eqnarray} The advantage of adapting equation (\ref{se1a}) is not only that the solution (\ref{sola}) is itself very easy to handle but also that the solution is ready to be extended to vector-valued random variable. For example, for random vectors taking values in $\mathbb{R}^n$, the Stein equation (\ref{se1a}) becomes \[ \Delta F(w)-w\cdot \nabla F(w)=\tilde{h}, \] the Stein identity becomes \[ \mathbb{E}[\Delta F(W)]=\mathbb{E}[W\cdot \nabla F(W)], \] and the solution (\ref{sola}) now becomes \[ F_{\tilde{h}}(w)=\int_{0}^{\infty}\left(\frac{1}{\sqrt{2\pi}}\right)^n\int_{\mathbb{R}^n}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-|y|^2/2}dy dt. \] In this paper we reprove the key lemma (Lemma 2.3 in \cite{BC}) and then obtain the estimation of upper bound for Wasserstein distance and Kolmogorov distance.\\ Keyword: Stein's method, Stein's equation, Stein identity, random vectors, Wasserstein distance, Kolmogorov distance. Yuh-Jia Lee 李育嘉 2009 學位論文 ; thesis 21 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立高雄大學 === 統計學研究所 === 97 === Unlike the Stein's method introduced in his celebrated paper\cite{S}, we consider the following alternative Stein's equation \begin{equation}\label{se1a} F''(w)-wF'(w)=\tilde{h}, \end{equation} where $\tilde{h}:=-\mathbb{E}h(Z)$ and $Z$ is a standard normal distributed random variable. The corresponding Stein identity now becomes \[ \mathbb{E}[F''(W)]=\mathbb{E}[WF'(W)], \] which also characterized the standard normal random variable as well. The solution of (\ref{se1a}) $F=F_{\tilde{h}}$ is given by \begin{eqnarray}\label{sola} F_{\tilde{h}}(w)=\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-y^2/2}dy dt. \end{eqnarray} The advantage of adapting equation (\ref{se1a}) is not only that the solution (\ref{sola}) is itself very easy to handle but also that the solution is ready to be extended to vector-valued random variable. For example, for random vectors taking values in $\mathbb{R}^n$, the Stein equation (\ref{se1a}) becomes \[ \Delta F(w)-w\cdot \nabla F(w)=\tilde{h}, \] the Stein identity becomes \[ \mathbb{E}[\Delta F(W)]=\mathbb{E}[W\cdot \nabla F(W)], \] and the solution (\ref{sola}) now becomes \[ F_{\tilde{h}}(w)=\int_{0}^{\infty}\left(\frac{1}{\sqrt{2\pi}}\right)^n\int_{\mathbb{R}^n}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-|y|^2/2}dy dt. \] In this paper we reprove the key lemma (Lemma 2.3 in \cite{BC}) and then obtain the estimation of upper bound for Wasserstein distance and Kolmogorov distance.\\ Keyword: Stein's method, Stein's equation, Stein identity, random vectors, Wasserstein distance, Kolmogorov distance.
author2 Yuh-Jia Lee
author_facet Yuh-Jia Lee
Ting-Ting Chuang
莊婷婷
author Ting-Ting Chuang
莊婷婷
spellingShingle Ting-Ting Chuang
莊婷婷
Normal Approximation for Random Vectors
author_sort Ting-Ting Chuang
title Normal Approximation for Random Vectors
title_short Normal Approximation for Random Vectors
title_full Normal Approximation for Random Vectors
title_fullStr Normal Approximation for Random Vectors
title_full_unstemmed Normal Approximation for Random Vectors
title_sort normal approximation for random vectors
publishDate 2009
url http://ndltd.ncl.edu.tw/handle/14693461166527256746
work_keys_str_mv AT tingtingchuang normalapproximationforrandomvectors
AT zhuāngtíngtíng normalapproximationforrandomvectors
AT tingtingchuang suíjīxiàngliàngzhīchángtàibījìn
AT zhuāngtíngtíng suíjīxiàngliàngzhīchángtàibījìn
_version_ 1718314169500958720