A non-parametric estimate for the number of shared species

碩士 === 國立政治大學 === 統計研究所 === 98 === The number of species is frequently used to measure the biodiversity of a population in ecology, biology, and comparative literature. There are quite a lot of studies related to estimating the number of species. Among these studies, Good (1953) proposed a famous es...

Full description

Bibliographic Details
Main Author: 洪志叡
Other Authors: 余清祥
Format: Others
Language:zh-TW
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/49422159587154720721
Description
Summary:碩士 === 國立政治大學 === 統計研究所 === 98 === The number of species is frequently used to measure the biodiversity of a population in ecology, biology, and comparative literature. There are quite a lot of studies related to estimating the number of species. Among these studies, Good (1953) proposed a famous estimate (Turing’s estimate) for the probability of unseen species. Subsequently, many methods have been proposed for estimating the number of species based on Good’s idea. For example, the Jackknife estimator by Burnham and Overton (1978) and sample coverage probability by Chao and Lee (1992) are two famous estimates for the number of species. In contrast, there are not many studies for the number of shared species in two communities, and Chao et al. (2000) is probably the only one. This article extends Good’s idea and the Jackknife method to estimate the number of shared species in two communities. Similar to Burnham and Overton, we establish the estimate and its estimated variance, based on the number of species appearing exactly once. We also use computer simulation and real data sets (Jin-Yong martial arts novels, Taiwan wild birds, Panama crustacean, and Barro Colorado Island forest) to evaluate the proposed method. We found that the coverage probability for confidence interval covering the true number of shared species is more than 90%. In addition, we compare the proposed method with Chao’s method.