Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation

碩士 === 國立中興大學 === 應用數學系所 === 98 === We describe an efficient spectral collocation method (SCM) for the numerical solutions of the Gross-Pitaevskii equation (GPE), where the Legendre polynomials are used as the basis functions for the trial function space. We show that the SCM obtained in this way is...

Full description

Bibliographic Details
Main Authors: Shu-Hao Chang, 張書豪
Other Authors: 簡澄陞
Format: Others
Language:en_US
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/80755376529457953218
id ndltd-TW-098NCHU5507081
record_format oai_dc
spelling ndltd-TW-098NCHU55070812015-10-30T04:05:19Z http://ndltd.ncl.edu.tw/handle/80755376529457953218 Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation 利用擬譜方法解Gross-Pitaevskii方程數值解 Shu-Hao Chang 張書豪 碩士 國立中興大學 應用數學系所 98 We describe an efficient spectral collocation method (SCM) for the numerical solutions of the Gross-Pitaevskii equation (GPE), where the Legendre polynomials are used as the basis functions for the trial function space. We show that the SCM obtained in this way is equivalent to the spectral- Galerkin method (SGM) involving the Gauss-Legendre integration. The SCM is incorporated in the context of continuaton methods for computing energy levels and wave functions of the stationary state nonlinear Schr¨odinger equation. Numerical results on the Bose-Einstein condensates (BEC) in a periodic potential are reported. 簡澄陞 2010 學位論文 ; thesis 29 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中興大學 === 應用數學系所 === 98 === We describe an efficient spectral collocation method (SCM) for the numerical solutions of the Gross-Pitaevskii equation (GPE), where the Legendre polynomials are used as the basis functions for the trial function space. We show that the SCM obtained in this way is equivalent to the spectral- Galerkin method (SGM) involving the Gauss-Legendre integration. The SCM is incorporated in the context of continuaton methods for computing energy levels and wave functions of the stationary state nonlinear Schr¨odinger equation. Numerical results on the Bose-Einstein condensates (BEC) in a periodic potential are reported.
author2 簡澄陞
author_facet 簡澄陞
Shu-Hao Chang
張書豪
author Shu-Hao Chang
張書豪
spellingShingle Shu-Hao Chang
張書豪
Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation
author_sort Shu-Hao Chang
title Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation
title_short Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation
title_full Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation
title_fullStr Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation
title_full_unstemmed Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation
title_sort spectral collocation methods for the numerical solutions of gross-pitaevskii equation
publishDate 2010
url http://ndltd.ncl.edu.tw/handle/80755376529457953218
work_keys_str_mv AT shuhaochang spectralcollocationmethodsforthenumericalsolutionsofgrosspitaevskiiequation
AT zhāngshūháo spectralcollocationmethodsforthenumericalsolutionsofgrosspitaevskiiequation
AT shuhaochang lìyòngnǐpǔfāngfǎjiěgrosspitaevskiifāngchéngshùzhíjiě
AT zhāngshūháo lìyòngnǐpǔfāngfǎjiěgrosspitaevskiifāngchéngshùzhíjiě
_version_ 1718115765817704448