Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation
碩士 === 國立中興大學 === 應用數學系所 === 98 === We describe an efficient spectral collocation method (SCM) for the numerical solutions of the Gross-Pitaevskii equation (GPE), where the Legendre polynomials are used as the basis functions for the trial function space. We show that the SCM obtained in this way is...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2010
|
Online Access: | http://ndltd.ncl.edu.tw/handle/80755376529457953218 |
id |
ndltd-TW-098NCHU5507081 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-098NCHU55070812015-10-30T04:05:19Z http://ndltd.ncl.edu.tw/handle/80755376529457953218 Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation 利用擬譜方法解Gross-Pitaevskii方程數值解 Shu-Hao Chang 張書豪 碩士 國立中興大學 應用數學系所 98 We describe an efficient spectral collocation method (SCM) for the numerical solutions of the Gross-Pitaevskii equation (GPE), where the Legendre polynomials are used as the basis functions for the trial function space. We show that the SCM obtained in this way is equivalent to the spectral- Galerkin method (SGM) involving the Gauss-Legendre integration. The SCM is incorporated in the context of continuaton methods for computing energy levels and wave functions of the stationary state nonlinear Schr¨odinger equation. Numerical results on the Bose-Einstein condensates (BEC) in a periodic potential are reported. 簡澄陞 2010 學位論文 ; thesis 29 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中興大學 === 應用數學系所 === 98 === We describe an efficient spectral collocation method (SCM) for the numerical solutions of the Gross-Pitaevskii equation (GPE), where the Legendre polynomials are used as the basis functions for the trial function space. We show that the SCM obtained in this way is equivalent to the spectral- Galerkin method (SGM) involving the Gauss-Legendre integration. The SCM is incorporated in the context of continuaton methods for computing energy levels and wave functions of the stationary state nonlinear Schr¨odinger equation. Numerical results on the Bose-Einstein condensates (BEC) in a periodic potential are reported.
|
author2 |
簡澄陞 |
author_facet |
簡澄陞 Shu-Hao Chang 張書豪 |
author |
Shu-Hao Chang 張書豪 |
spellingShingle |
Shu-Hao Chang 張書豪 Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation |
author_sort |
Shu-Hao Chang |
title |
Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation |
title_short |
Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation |
title_full |
Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation |
title_fullStr |
Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation |
title_full_unstemmed |
Spectral collocation methods for the numerical solutions of Gross-Pitaevskii equation |
title_sort |
spectral collocation methods for the numerical solutions of gross-pitaevskii equation |
publishDate |
2010 |
url |
http://ndltd.ncl.edu.tw/handle/80755376529457953218 |
work_keys_str_mv |
AT shuhaochang spectralcollocationmethodsforthenumericalsolutionsofgrosspitaevskiiequation AT zhāngshūháo spectralcollocationmethodsforthenumericalsolutionsofgrosspitaevskiiequation AT shuhaochang lìyòngnǐpǔfāngfǎjiěgrosspitaevskiifāngchéngshùzhíjiě AT zhāngshūháo lìyòngnǐpǔfāngfǎjiěgrosspitaevskiifāngchéngshùzhíjiě |
_version_ |
1718115765817704448 |