Summary: | 碩士 === 國立成功大學 === 建築學系碩博士班 === 98 === Data collection is an important work in the earthquake reconnaissance. However, major issues were found in the damage data collected from the past earthquakes. Different damage evaluation standards and data formats were used by different inspectors, causing the difficulty and misunderstanding in using these data. Therefore, this thesis is aimed at improving the post-earthquake damage evaluation procedure.
Firstly, several current damage evaluation standards were reviewed. A new damage evaluation procedure was then presented based on the review. The presented procedure was validated by the comparison with 3 in-situ test specimens. The positions of damage conditions on the push over curves and the drift ratio corresponding to each damage state were discussed.
The ability to distinguish moderate damage states of the procedure was also verified by using the data of 10 school buildings damaged during recent earthquakes. Twelve professionals with different backgrounds were asked to evaluate the damage state of the buildings with both their subjective judgments and the presented procedure. The damage states determined by using the presented procedure showed less dispersion and stricter result than the subjective judgments. The procedure results between professionals from different back grounds also showed less difference. The procedure was then compared with current procedure used by the Construction and Planning Agency; the results from the two procedures showed good agreement.
Finally, the presented procedure was applied to an existing databank for school buildings damaged during the Chi-Chi earthquake to revise the damage state. The relationships between the revised damage state and structural factors, including adjacent building condition, building orientation, and column density, were studied. Typical school buildings that had adjacent buildings facing them with the strong axis showed lighter damage state than those that had no adjacent buildings or adjacent buildings facing with the weak axis. The building orientation also showed clear relationship with the damage state in this earthquake. Buildings with the longitudinal axis along the E-W and NW-SE directions had heavier damage than buildings lie in the N-S direction. The relationship between the column density and the damage state was reasonable; the column density decreased as the damage state became heavier.
|