The Problems of Rankings on Sierpinski graphs

碩士 === 國立暨南國際大學 === 資訊工程學系 === 98 === For a graph G = (V;E), a vertex (edge, respectively) t-ranking is a coloring c : V ! f1; 2; : : : ; tg (c0 : E ! f1; 2; : : : ; tg, respectively) such that, for any two vertices u and v (edges ex and ey, respectively) with c(u) = c(v) (c0(ex) = c0(ey), respectiv...

Full description

Bibliographic Details
Main Authors: YO-Lin Lin, 林佑霖
Other Authors: Justie Su-Tzu Juan
Format: Others
Language:en_US
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/17491090115707804237
id ndltd-TW-098NCNU0392024
record_format oai_dc
spelling ndltd-TW-098NCNU03920242015-10-13T18:21:45Z http://ndltd.ncl.edu.tw/handle/17491090115707804237 The Problems of Rankings on Sierpinski graphs 謝爾賓斯基圖形的排序問題 YO-Lin Lin 林佑霖 碩士 國立暨南國際大學 資訊工程學系 98 For a graph G = (V;E), a vertex (edge, respectively) t-ranking is a coloring c : V ! f1; 2; : : : ; tg (c0 : E ! f1; 2; : : : ; tg, respectively) such that, for any two vertices u and v (edges ex and ey, respectively) with c(u) = c(v) (c0(ex) = c0(ey), respectively), every path between them contains an intermediate vertex w (edge ew, respectively) with c(w) > c(u) (c0(ew) > c0(ex), respectively). The vertex ranking number r(G) (edge ranking number 0 r(G), respectively) is the smallest value of t such that G has a vertex (edge, respectively) t-ranking. The problem to nd r(G) (0 r(G), respectively) for a graph G is called the vertex ranking problem (the edge ranking problem, respectively). A partition of V is a set of nonempty subsets of V such that every vertex in V is in exactly one of these subsets. In this thesis, we introduce two relations for ranking number of a graph. One is between vertex ranking number and vertex partitions, the other is between edge ranking number and vertex partitions. By using the proposed recurrence formulas, we derived two results. One is the edge ranking number of the Sierpinski graph 0 r(S(n; k)) = n0 r(Kk) for any n; k > 2, and the other is the bound of vertex ranking number of Sierpinski graphs (n2) r(Kk)+r(S00(n; k)) 6 r(S(n; k)) 6 (n2)0 r(Kk)+r(S00(n; k))+1 for any n > 2 and k > 3 where S00(n; k) is the subgraph of S(n; k) by removing all vertices of degree k 1 from S(n; k). Justie Su-Tzu Juan 阮夙姿 2010 學位論文 ; thesis 34 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立暨南國際大學 === 資訊工程學系 === 98 === For a graph G = (V;E), a vertex (edge, respectively) t-ranking is a coloring c : V ! f1; 2; : : : ; tg (c0 : E ! f1; 2; : : : ; tg, respectively) such that, for any two vertices u and v (edges ex and ey, respectively) with c(u) = c(v) (c0(ex) = c0(ey), respectively), every path between them contains an intermediate vertex w (edge ew, respectively) with c(w) > c(u) (c0(ew) > c0(ex), respectively). The vertex ranking number r(G) (edge ranking number 0 r(G), respectively) is the smallest value of t such that G has a vertex (edge, respectively) t-ranking. The problem to nd r(G) (0 r(G), respectively) for a graph G is called the vertex ranking problem (the edge ranking problem, respectively). A partition of V is a set of nonempty subsets of V such that every vertex in V is in exactly one of these subsets. In this thesis, we introduce two relations for ranking number of a graph. One is between vertex ranking number and vertex partitions, the other is between edge ranking number and vertex partitions. By using the proposed recurrence formulas, we derived two results. One is the edge ranking number of the Sierpinski graph 0 r(S(n; k)) = n0 r(Kk) for any n; k > 2, and the other is the bound of vertex ranking number of Sierpinski graphs (n2) r(Kk)+r(S00(n; k)) 6 r(S(n; k)) 6 (n2)0 r(Kk)+r(S00(n; k))+1 for any n > 2 and k > 3 where S00(n; k) is the subgraph of S(n; k) by removing all vertices of degree k 1 from S(n; k).
author2 Justie Su-Tzu Juan
author_facet Justie Su-Tzu Juan
YO-Lin Lin
林佑霖
author YO-Lin Lin
林佑霖
spellingShingle YO-Lin Lin
林佑霖
The Problems of Rankings on Sierpinski graphs
author_sort YO-Lin Lin
title The Problems of Rankings on Sierpinski graphs
title_short The Problems of Rankings on Sierpinski graphs
title_full The Problems of Rankings on Sierpinski graphs
title_fullStr The Problems of Rankings on Sierpinski graphs
title_full_unstemmed The Problems of Rankings on Sierpinski graphs
title_sort problems of rankings on sierpinski graphs
publishDate 2010
url http://ndltd.ncl.edu.tw/handle/17491090115707804237
work_keys_str_mv AT yolinlin theproblemsofrankingsonsierpinskigraphs
AT línyòulín theproblemsofrankingsonsierpinskigraphs
AT yolinlin xièěrbīnsījītúxíngdepáixùwèntí
AT línyòulín xièěrbīnsījītúxíngdepáixùwèntí
AT yolinlin problemsofrankingsonsierpinskigraphs
AT línyòulín problemsofrankingsonsierpinskigraphs
_version_ 1718032307558809600