WiMAX Convolutional Turbo Code Technology and Digital Signal Processor Implementation
碩士 === 國立交通大學 === 電子工程系所 === 98 === The focus of this thesis is the research of the convolutional turbo code (CTC) defined in IEEE 802.16e OFDMA and implement on the C6416 DSP. We explain the duo-binary circular recursive systematic convolutional encoding (duo-binary CRSC) and use BCJR decoding a...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2009
|
Online Access: | http://ndltd.ncl.edu.tw/handle/48478368215722648100 |
id |
ndltd-TW-098NCTU5428068 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-098NCTU54280682016-04-25T04:27:14Z http://ndltd.ncl.edu.tw/handle/48478368215722648100 WiMAX Convolutional Turbo Code Technology and Digital Signal Processor Implementation WiMAX迴旋渦輪碼技術與數位訊號處理器實現 Tseng, Shao-Hsueh 曾劭學 碩士 國立交通大學 電子工程系所 98 The focus of this thesis is the research of the convolutional turbo code (CTC) defined in IEEE 802.16e OFDMA and implement on the C6416 DSP. We explain the duo-binary circular recursive systematic convolutional encoding (duo-binary CRSC) and use BCJR decoding algorithm by max-log-MAP. We employ the C program to insure the correctness of our algorithm and compensate the performance loss by max-log-MAP, furthermore, simulate the CTC for different modulations in AWGN. Then, we implement on TI C6416 DSP, changing trellis order and using intrinsic function to achieve parallel operation. Therefore, we improve decoder operation speed efficiently. For original decoder just can achieved a processing rate of 800 Kbps . For improved decoder , which is approximately 2 times speed up in decoding rate. Therefore, the decoder can achieve a further data processing rate of 1500 Kbps. Lin, David-W 林大衛 2009 學位論文 ; thesis 93 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立交通大學 === 電子工程系所 === 98 === The focus of this thesis is the research of the convolutional turbo code (CTC) defined in IEEE 802.16e OFDMA and implement on the C6416 DSP. We explain the duo-binary circular recursive systematic convolutional encoding (duo-binary CRSC) and use BCJR decoding algorithm by max-log-MAP. We employ the C program to insure the
correctness of our algorithm and compensate the performance loss by max-log-MAP, furthermore, simulate the CTC for different modulations in AWGN.
Then, we implement on TI C6416 DSP, changing trellis order and using intrinsic function to achieve parallel operation. Therefore, we improve decoder operation speed efficiently. For original decoder just can achieved a processing rate of 800 Kbps . For improved decoder , which is approximately 2 times speed up in decoding rate. Therefore, the decoder can achieve a further data processing rate of 1500 Kbps.
|
author2 |
Lin, David-W |
author_facet |
Lin, David-W Tseng, Shao-Hsueh 曾劭學 |
author |
Tseng, Shao-Hsueh 曾劭學 |
spellingShingle |
Tseng, Shao-Hsueh 曾劭學 WiMAX Convolutional Turbo Code Technology and Digital Signal Processor Implementation |
author_sort |
Tseng, Shao-Hsueh |
title |
WiMAX Convolutional Turbo Code Technology and Digital Signal Processor Implementation |
title_short |
WiMAX Convolutional Turbo Code Technology and Digital Signal Processor Implementation |
title_full |
WiMAX Convolutional Turbo Code Technology and Digital Signal Processor Implementation |
title_fullStr |
WiMAX Convolutional Turbo Code Technology and Digital Signal Processor Implementation |
title_full_unstemmed |
WiMAX Convolutional Turbo Code Technology and Digital Signal Processor Implementation |
title_sort |
wimax convolutional turbo code technology and digital signal processor implementation |
publishDate |
2009 |
url |
http://ndltd.ncl.edu.tw/handle/48478368215722648100 |
work_keys_str_mv |
AT tsengshaohsueh wimaxconvolutionalturbocodetechnologyanddigitalsignalprocessorimplementation AT céngshàoxué wimaxconvolutionalturbocodetechnologyanddigitalsignalprocessorimplementation AT tsengshaohsueh wimaxhuíxuánwōlúnmǎjìshùyǔshùwèixùnhàochùlǐqìshíxiàn AT céngshàoxué wimaxhuíxuánwōlúnmǎjìshùyǔshùwèixùnhàochùlǐqìshíxiàn |
_version_ |
1718232633872220160 |