Surface modifications of Polyvinylidene fluoride and Polysulfone by O2 plasma and polydopamine coating

碩士 === 國立臺灣科技大學 === 化學工程系 === 98 === Oxygen plasma and polydopamine coating were performed on two polymers with excellent mechanical strength and good biocompatibility, polyvinilydene fluoride and polysulfone, to study the effects of surface modifications on the surface physical-chemical properties...

Full description

Bibliographic Details
Main Authors: Ivan Yared, 楊麟翔
Other Authors: Meng-Jiy Wang
Format: Others
Language:en_US
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/41832114575952514757
id ndltd-TW-098NTUS5342047
record_format oai_dc
spelling ndltd-TW-098NTUS53420472016-04-22T04:23:47Z http://ndltd.ncl.edu.tw/handle/41832114575952514757 Surface modifications of Polyvinylidene fluoride and Polysulfone by O2 plasma and polydopamine coating 利用氧氣電漿以及聚巴胺塗佈對聚偏二氟乙烯及聚碸進行表面處理 Ivan Yared 楊麟翔 碩士 國立臺灣科技大學 化學工程系 98 Oxygen plasma and polydopamine coating were performed on two polymers with excellent mechanical strength and good biocompatibility, polyvinilydene fluoride and polysulfone, to study the effects of surface modifications on the surface physical-chemical properties and on the cell adhesion behaviors. O2 plasma altered both PVDF and PSf to more hydrophilic where the WCA reduced more significantly on the O2 plasma treated PSf. By using XPS, the presence of oxygen functionalities on modified surfaces were confirmed and further deconvolution revealed the presence of C-O, C=O, and O-C=O groups. Surface etching occurred on both O2 plasma modified polymers as demonstrated by AFM analysis. On the other hand, the polydopamine coating resulted in similar reduction of WCA and surface composition on both PVDF and PSf which was also confirmed by AFM. The biocompatibility was evaluated by directly cultivating L-929 mouse fibroblast cells on pristine and modified PVDF and PSf. For PVDF, the highest cell density, three to four folds than the pristine, was achieved by either O2 plasma modification or polydopamine coating. On the other, for PSf, the polydopamine coating resulted in higher cell density compared with O2 plasma treatment. PVDF is widely used for filtration owing to its good mechanical property, thermal stability, and good solvent resistance. The commonly recognized problem of PVDF filtration membrane was the fouling due to the adsorbed protein on the hydrophobic membrane surface which reduced the permeate flux. In this study, the second goal was to reduce protein fouling on Durapore® membrane by surface modification with O2 plasma treatment and polydopamine coating. Both O2 plasma modified and polydopamine coated Durapore® membrane showed reduced WCA where O2 plasma treatment resulted in higher surface area due to plasma etching and higher surface electronegativity, the polydoapmine coating reduced membrane surface area and imparted positively-charged functionalities on membrane surface. The BSA fouling resistance was created by O2 plasma on Durapore® membrane where the fouling time was delayed by more than 10 min and the flux was higher than the pristine Durapore® membrane. Further reduction of membrane fouling was attained by prolonging plasma treatment time which resulted in more negatively charged surface. On the other hand, the polydopamine coated Durapore® membrane showed rapid flux reduction and no particular anti-fouling property was observed. By performing the dynamic BSA adsorption experiment, it allowed to draw a conclusion that the membrane fouling was strongly affected by the overall resulted properties of surface electrical charge, surface wettability and surface area. Meng-Jiy Wang 王孟菊 2010 學位論文 ; thesis 126 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立臺灣科技大學 === 化學工程系 === 98 === Oxygen plasma and polydopamine coating were performed on two polymers with excellent mechanical strength and good biocompatibility, polyvinilydene fluoride and polysulfone, to study the effects of surface modifications on the surface physical-chemical properties and on the cell adhesion behaviors. O2 plasma altered both PVDF and PSf to more hydrophilic where the WCA reduced more significantly on the O2 plasma treated PSf. By using XPS, the presence of oxygen functionalities on modified surfaces were confirmed and further deconvolution revealed the presence of C-O, C=O, and O-C=O groups. Surface etching occurred on both O2 plasma modified polymers as demonstrated by AFM analysis. On the other hand, the polydopamine coating resulted in similar reduction of WCA and surface composition on both PVDF and PSf which was also confirmed by AFM. The biocompatibility was evaluated by directly cultivating L-929 mouse fibroblast cells on pristine and modified PVDF and PSf. For PVDF, the highest cell density, three to four folds than the pristine, was achieved by either O2 plasma modification or polydopamine coating. On the other, for PSf, the polydopamine coating resulted in higher cell density compared with O2 plasma treatment. PVDF is widely used for filtration owing to its good mechanical property, thermal stability, and good solvent resistance. The commonly recognized problem of PVDF filtration membrane was the fouling due to the adsorbed protein on the hydrophobic membrane surface which reduced the permeate flux. In this study, the second goal was to reduce protein fouling on Durapore® membrane by surface modification with O2 plasma treatment and polydopamine coating. Both O2 plasma modified and polydopamine coated Durapore® membrane showed reduced WCA where O2 plasma treatment resulted in higher surface area due to plasma etching and higher surface electronegativity, the polydoapmine coating reduced membrane surface area and imparted positively-charged functionalities on membrane surface. The BSA fouling resistance was created by O2 plasma on Durapore® membrane where the fouling time was delayed by more than 10 min and the flux was higher than the pristine Durapore® membrane. Further reduction of membrane fouling was attained by prolonging plasma treatment time which resulted in more negatively charged surface. On the other hand, the polydopamine coated Durapore® membrane showed rapid flux reduction and no particular anti-fouling property was observed. By performing the dynamic BSA adsorption experiment, it allowed to draw a conclusion that the membrane fouling was strongly affected by the overall resulted properties of surface electrical charge, surface wettability and surface area.
author2 Meng-Jiy Wang
author_facet Meng-Jiy Wang
Ivan Yared
楊麟翔
author Ivan Yared
楊麟翔
spellingShingle Ivan Yared
楊麟翔
Surface modifications of Polyvinylidene fluoride and Polysulfone by O2 plasma and polydopamine coating
author_sort Ivan Yared
title Surface modifications of Polyvinylidene fluoride and Polysulfone by O2 plasma and polydopamine coating
title_short Surface modifications of Polyvinylidene fluoride and Polysulfone by O2 plasma and polydopamine coating
title_full Surface modifications of Polyvinylidene fluoride and Polysulfone by O2 plasma and polydopamine coating
title_fullStr Surface modifications of Polyvinylidene fluoride and Polysulfone by O2 plasma and polydopamine coating
title_full_unstemmed Surface modifications of Polyvinylidene fluoride and Polysulfone by O2 plasma and polydopamine coating
title_sort surface modifications of polyvinylidene fluoride and polysulfone by o2 plasma and polydopamine coating
publishDate 2010
url http://ndltd.ncl.edu.tw/handle/41832114575952514757
work_keys_str_mv AT ivanyared surfacemodificationsofpolyvinylidenefluorideandpolysulfonebyo2plasmaandpolydopaminecoating
AT yánglínxiáng surfacemodificationsofpolyvinylidenefluorideandpolysulfonebyo2plasmaandpolydopaminecoating
AT ivanyared lìyòngyǎngqìdiànjiāngyǐjíjùbāàntúbùduìjùpiānèrfúyǐxījíjùfēngjìnxíngbiǎomiànchùlǐ
AT yánglínxiáng lìyòngyǎngqìdiànjiāngyǐjíjùbāàntúbùduìjùpiānèrfúyǐxījíjùfēngjìnxíngbiǎomiànchùlǐ
_version_ 1718231201516355584