Optimal Portfolio Selection Base on Sharpe Index Selection

碩士 === 中原大學 === 國際貿易研究所 === 99 === The purpose of investment is to get reward. Generally speaking, investors need to bear higher volatility risks if expected returns of the invested targets are higher, and vice versa. Investors should utilize their money to make good allocation of their assets, and...

Full description

Bibliographic Details
Main Authors: Hsiao-Fen Chang, 張曉芬
Other Authors: Chang-Chou Chiang
Format: Others
Language:zh-TW
Published: 2011
Online Access:http://ndltd.ncl.edu.tw/handle/43543106040133540795
id ndltd-TW-099CYCU5323051
record_format oai_dc
spelling ndltd-TW-099CYCU53230512015-10-13T20:23:26Z http://ndltd.ncl.edu.tw/handle/43543106040133540795 Optimal Portfolio Selection Base on Sharpe Index Selection Sharpe指數下最適投資組合之決策 Hsiao-Fen Chang 張曉芬 碩士 中原大學 國際貿易研究所 99 The purpose of investment is to get reward. Generally speaking, investors need to bear higher volatility risks if expected returns of the invested targets are higher, and vice versa. Investors should utilize their money to make good allocation of their assets, and emphasize on the overall returns and risks, rather than just focus on price fluctuations of any specific security. Diversification is also the main consideration in building the optimal investment portfolio. The idea of mutual funds is to use modern investment theory to make optimal portfo lio decision and achieve best performance. To do so, investors can achieve the goal of minimum risk or maximum return. This research is to make use of theories of the modern investment portfolio models. First, we apply the Mean-Variance Criterion Model by H. Markowitz (1952) to get the Efficient Set or Effi-cient Frontier. The concepts of Capital Asset Pricing Model (CAPM) and Sharpe Ratio by William F. Sharpe (1964, 1966) are then used to get the optimal investment portfolio through single index model. Apart from the traditional investment portfolio models and single index model, we also add the Risk Return restriction to this research. We refer to the five Risk Return Levels (RR1, RR2, RR3, RR4, RR5) stipulated by the Bankers Association of the Republic of China according to the risk at-tributes of the invested targets and market risk situation of the invested areas to help investors plan the optimal assets allocation suitable to their investing attributes. Chang-Chou Chiang 江長周 2011 學位論文 ; thesis 55 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 中原大學 === 國際貿易研究所 === 99 === The purpose of investment is to get reward. Generally speaking, investors need to bear higher volatility risks if expected returns of the invested targets are higher, and vice versa. Investors should utilize their money to make good allocation of their assets, and emphasize on the overall returns and risks, rather than just focus on price fluctuations of any specific security. Diversification is also the main consideration in building the optimal investment portfolio. The idea of mutual funds is to use modern investment theory to make optimal portfo lio decision and achieve best performance. To do so, investors can achieve the goal of minimum risk or maximum return. This research is to make use of theories of the modern investment portfolio models. First, we apply the Mean-Variance Criterion Model by H. Markowitz (1952) to get the Efficient Set or Effi-cient Frontier. The concepts of Capital Asset Pricing Model (CAPM) and Sharpe Ratio by William F. Sharpe (1964, 1966) are then used to get the optimal investment portfolio through single index model. Apart from the traditional investment portfolio models and single index model, we also add the Risk Return restriction to this research. We refer to the five Risk Return Levels (RR1, RR2, RR3, RR4, RR5) stipulated by the Bankers Association of the Republic of China according to the risk at-tributes of the invested targets and market risk situation of the invested areas to help investors plan the optimal assets allocation suitable to their investing attributes.
author2 Chang-Chou Chiang
author_facet Chang-Chou Chiang
Hsiao-Fen Chang
張曉芬
author Hsiao-Fen Chang
張曉芬
spellingShingle Hsiao-Fen Chang
張曉芬
Optimal Portfolio Selection Base on Sharpe Index Selection
author_sort Hsiao-Fen Chang
title Optimal Portfolio Selection Base on Sharpe Index Selection
title_short Optimal Portfolio Selection Base on Sharpe Index Selection
title_full Optimal Portfolio Selection Base on Sharpe Index Selection
title_fullStr Optimal Portfolio Selection Base on Sharpe Index Selection
title_full_unstemmed Optimal Portfolio Selection Base on Sharpe Index Selection
title_sort optimal portfolio selection base on sharpe index selection
publishDate 2011
url http://ndltd.ncl.edu.tw/handle/43543106040133540795
work_keys_str_mv AT hsiaofenchang optimalportfolioselectionbaseonsharpeindexselection
AT zhāngxiǎofēn optimalportfolioselectionbaseonsharpeindexselection
AT hsiaofenchang sharpezhǐshùxiàzuìshìtóuzīzǔhézhījuécè
AT zhāngxiǎofēn sharpezhǐshùxiàzuìshìtóuzīzǔhézhījuécè
_version_ 1718047315062685696