Algebraic Relations for Multiple Zeta Values Through Shuffle Product Formulas

博士 === 國立中正大學 === 數學研究所 === 100 === For a multi-index $\mfa = (\seq{a}{1}{2}{p})$ of positive integers with $a_{p} \geq 2$, a multiple zeta value of depth $p$ and weight $\av{\mfa} = \fsum{a}{1}{2}{p}$ or $p$-fold Euler sum is defined to be \[ \zeta(\seq{a}{1}{2}{p}) = \sum_{1 \leq n_{1} <...

Full description

Bibliographic Details
Main Authors: Lee, Tung-Yang, 李東洋
Other Authors: Eie, Minking
Format: Others
Language:en_US
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/23314838914548492550
Description
Summary:博士 === 國立中正大學 === 數學研究所 === 100 === For a multi-index $\mfa = (\seq{a}{1}{2}{p})$ of positive integers with $a_{p} \geq 2$, a multiple zeta value of depth $p$ and weight $\av{\mfa} = \fsum{a}{1}{2}{p}$ or $p$-fold Euler sum is defined to be \[ \zeta(\seq{a}{1}{2}{p}) = \sum_{1 \leq n_{1} < n_{2} < \cdots < n_{p}} n_{1}^{-a_{1}} n_{2}^{-a_{2}} \cdots n_{p}^{-a_{p}}, \] which is a natural generalization of the classical Euler sum \[ S_{a, b} = \sum_{k=1}^{\infty} \frac{1}{k^{b}} \sum_{j=1}^{k} \frac{1}{j^{a}}, \quad a, b \in \bn, \quad b \geq 2. \] Multiple zeta values can be expressed as Drinfel'd iterated integrals over a simplex of weight dimension and the shuffle product of two multiple zeta values can be defined. In this dissertation I shall provide a number of algebraic relations among multiple zeta values using a modified shuffle product formula to certain integrals. Furthermore, the shuffle product of two multiple zeta values of weight $m$ and $n$, respectively, will produce $\binom{m+n}{m}$ multiple zeta values of weight $m+n$. By counting the number of multiple zeta values in relations produced from the shuffle product of two particular multiple zeta values, we obtain many specific combinatorial identities such as \[ \binom{m+n+4}{i+j+2} = \sum_{m_{1}+m_{2}=m} \brac{\binom{m_{1}}{i} \binom{m_{2}+n+3}{j+1} + \binom{m_{1}}{m-i} \binom{m_{2}+n+3}{n-j+1}} \] and \begin{align*} \binom{i+j}{i} \binom{m+n+4}{i+j+2} &= \binom{i+j}{i} \brac{\binom{m+j+3}{i+j+2} + \binom{i+n+2}{i+j+2}} \\ &\quad + \sum_{m_{1}+m_{2}=m} \sum_{n_{1}+n_{2}=n} \binom{n_{1}+i-m_{2}}{n_{1}} \binom{n_{1}+m_{1}+2}{m-i+1} \binom{m_{2}+j-n_{1}}{m_{2}} \binom{m_{2}+n_{2}+1}{n-j}, \end{align*} where $(m, n, i, j)$ is a quadruple of nonnegative integers with $i \leq m$ and $j \leq n$.