Using GM (1,1) to improve the utility of insolation information for efficient voltage prediction of PV maximum power output

碩士 === 建國科技大學 === 電子工程系暨研究所 === 100 === Among the maximum power point tracking methods, this work combines the traditional perturbation-and-observation operation and the grey prediction with GM (1, 1) model to predict the value of next coming insolation. The proposed method tracks the voltage of max...

Full description

Bibliographic Details
Main Authors: Jeng-Lung Tsai, 蔡政龍
Other Authors: Yu-Fang Hsu
Format: Others
Language:zh-TW
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/38577671269566284633
id ndltd-TW-100CTU05427015
record_format oai_dc
spelling ndltd-TW-100CTU054270152016-09-11T04:08:29Z http://ndltd.ncl.edu.tw/handle/38577671269566284633 Using GM (1,1) to improve the utility of insolation information for efficient voltage prediction of PV maximum power output 使用GM(1,1)增加照度資訊引用率於改善太陽能電池最大功率追蹤之電壓預測成效 Jeng-Lung Tsai 蔡政龍 碩士 建國科技大學 電子工程系暨研究所 100 Among the maximum power point tracking methods, this work combines the traditional perturbation-and-observation operation and the grey prediction with GM (1, 1) model to predict the value of next coming insolation. The proposed method tracks the voltage of maximum power point in advance at the possible next insolation condition and thus can gradually adjust the output voltage of the control unit. Accordingly, the PV has the smoother output power performance between two insolation samples, and avoids providing a jumping output voltage from the control unit. Technically, a linear interpolation method is firstly used to increase the data amount of insolation and the gray prediction is adopted to predict the voltage at the maximal power point on the purpose of enhancing the number of insolation samples. In the computer simulations, the method of linear interpolation is used to increase the illumination samples. There are 1, 3 and 9 data between the adjacent two samples, respectively, and then to explore the influence of the equivalent sampling periods when predicting the maximum power voltage accuracy. As a result, the simulations show that the involved interpolation technique can decrease the prediction error of insolation from 20.8% to 0.08% because of increasing the utilizing rate of the actual insolation samples from 7% to 94%. Yu-Fang Hsu Heng-Chou Chen 許玉芳 陳恒州 2012 學位論文 ; thesis 60 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 建國科技大學 === 電子工程系暨研究所 === 100 === Among the maximum power point tracking methods, this work combines the traditional perturbation-and-observation operation and the grey prediction with GM (1, 1) model to predict the value of next coming insolation. The proposed method tracks the voltage of maximum power point in advance at the possible next insolation condition and thus can gradually adjust the output voltage of the control unit. Accordingly, the PV has the smoother output power performance between two insolation samples, and avoids providing a jumping output voltage from the control unit. Technically, a linear interpolation method is firstly used to increase the data amount of insolation and the gray prediction is adopted to predict the voltage at the maximal power point on the purpose of enhancing the number of insolation samples. In the computer simulations, the method of linear interpolation is used to increase the illumination samples. There are 1, 3 and 9 data between the adjacent two samples, respectively, and then to explore the influence of the equivalent sampling periods when predicting the maximum power voltage accuracy. As a result, the simulations show that the involved interpolation technique can decrease the prediction error of insolation from 20.8% to 0.08% because of increasing the utilizing rate of the actual insolation samples from 7% to 94%.
author2 Yu-Fang Hsu
author_facet Yu-Fang Hsu
Jeng-Lung Tsai
蔡政龍
author Jeng-Lung Tsai
蔡政龍
spellingShingle Jeng-Lung Tsai
蔡政龍
Using GM (1,1) to improve the utility of insolation information for efficient voltage prediction of PV maximum power output
author_sort Jeng-Lung Tsai
title Using GM (1,1) to improve the utility of insolation information for efficient voltage prediction of PV maximum power output
title_short Using GM (1,1) to improve the utility of insolation information for efficient voltage prediction of PV maximum power output
title_full Using GM (1,1) to improve the utility of insolation information for efficient voltage prediction of PV maximum power output
title_fullStr Using GM (1,1) to improve the utility of insolation information for efficient voltage prediction of PV maximum power output
title_full_unstemmed Using GM (1,1) to improve the utility of insolation information for efficient voltage prediction of PV maximum power output
title_sort using gm (1,1) to improve the utility of insolation information for efficient voltage prediction of pv maximum power output
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/38577671269566284633
work_keys_str_mv AT jenglungtsai usinggm11toimprovetheutilityofinsolationinformationforefficientvoltagepredictionofpvmaximumpoweroutput
AT càizhènglóng usinggm11toimprovetheutilityofinsolationinformationforefficientvoltagepredictionofpvmaximumpoweroutput
AT jenglungtsai shǐyònggm11zēngjiāzhàodùzīxùnyǐnyònglǜyúgǎishàntàiyángnéngdiànchízuìdàgōnglǜzhuīzōngzhīdiànyāyùcèchéngxiào
AT càizhènglóng shǐyònggm11zēngjiāzhàodùzīxùnyǐnyònglǜyúgǎishàntàiyángnéngdiànchízuìdàgōnglǜzhuīzōngzhīdiànyāyùcèchéngxiào
_version_ 1718382933150007296