Isometries of real and complex Hilbert C*-modules

博士 === 國立中山大學 === 應用數學系研究所 === 100 === Let A and B be real or complex C*-algebras. Let V and W be real or complex (right) full Hilbert C*-modules over A and B, respectively. Let T be a linear bijective map from V onto W. We show the following four statements are equivalent. (a) T is a unitary operat...

Full description

Bibliographic Details
Main Authors: Ming-Hsiu Hsu, 許銘修
Other Authors: Ngai-Ching Wong
Format: Others
Language:en_US
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/65738727022766899829
id ndltd-TW-100NSYS5507075
record_format oai_dc
spelling ndltd-TW-100NSYS55070752015-10-13T21:22:19Z http://ndltd.ncl.edu.tw/handle/65738727022766899829 Isometries of real and complex Hilbert C*-modules 實數與複數西爾伯特丙星模間的等距算子 Ming-Hsiu Hsu 許銘修 博士 國立中山大學 應用數學系研究所 100 Let A and B be real or complex C*-algebras. Let V and W be real or complex (right) full Hilbert C*-modules over A and B, respectively. Let T be a linear bijective map from V onto W. We show the following four statements are equivalent. (a) T is a unitary operator, i.e., there is a ∗-isomorphism α : A → B such that <Tx,Ty> = α(<x,y>), ∀ x,y∈ V ; (b) T preserves TRO products, i.e., T(x<y,z>) =Tx<Ty,Tz>, ∀ x,y,z in V ; (c) T is a 2-isometry; (d) T is a complete isometry. Moreover, if A and B are commutative, the four statements are also equivalent to (e) T is a isometry. On the other hand, if V and W are complex Hilbert C*-modules over complex C*-algebras, then T is unitary if and only if it is a module map, i.e., T(xa) = (Tx)α(a), ∀ x ∈ V,a ∈ A. Ngai-Ching Wong 黃毅青 2012 學位論文 ; thesis 50 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 博士 === 國立中山大學 === 應用數學系研究所 === 100 === Let A and B be real or complex C*-algebras. Let V and W be real or complex (right) full Hilbert C*-modules over A and B, respectively. Let T be a linear bijective map from V onto W. We show the following four statements are equivalent. (a) T is a unitary operator, i.e., there is a ∗-isomorphism α : A → B such that <Tx,Ty> = α(<x,y>), ∀ x,y∈ V ; (b) T preserves TRO products, i.e., T(x<y,z>) =Tx<Ty,Tz>, ∀ x,y,z in V ; (c) T is a 2-isometry; (d) T is a complete isometry. Moreover, if A and B are commutative, the four statements are also equivalent to (e) T is a isometry. On the other hand, if V and W are complex Hilbert C*-modules over complex C*-algebras, then T is unitary if and only if it is a module map, i.e., T(xa) = (Tx)α(a), ∀ x ∈ V,a ∈ A.
author2 Ngai-Ching Wong
author_facet Ngai-Ching Wong
Ming-Hsiu Hsu
許銘修
author Ming-Hsiu Hsu
許銘修
spellingShingle Ming-Hsiu Hsu
許銘修
Isometries of real and complex Hilbert C*-modules
author_sort Ming-Hsiu Hsu
title Isometries of real and complex Hilbert C*-modules
title_short Isometries of real and complex Hilbert C*-modules
title_full Isometries of real and complex Hilbert C*-modules
title_fullStr Isometries of real and complex Hilbert C*-modules
title_full_unstemmed Isometries of real and complex Hilbert C*-modules
title_sort isometries of real and complex hilbert c*-modules
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/65738727022766899829
work_keys_str_mv AT minghsiuhsu isometriesofrealandcomplexhilbertcmodules
AT xǔmíngxiū isometriesofrealandcomplexhilbertcmodules
AT minghsiuhsu shíshùyǔfùshùxīěrbótèbǐngxīngmójiāndeděngjùsuànzi
AT xǔmíngxiū shíshùyǔfùshùxīěrbótèbǐngxīngmójiāndeděngjùsuànzi
_version_ 1718060711753547776