Dynamic asset allocation with estimation risk

博士 === 國立政治大學 === 金融研究所 === 101 === This dissertation consists of two essays on dynamic asset allocation with regard to dealing with estimation risk as being in different uncertainties in the mean-variance framework. The first essay concerns estimation errors from disregarding uncertain inflation in...

Full description

Bibliographic Details
Main Authors: Tang, Mei Ling, 湯美玲
Other Authors: Chen, Son Nan
Format: Others
Language:en_US
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/8v22ac
Description
Summary:博士 === 國立政治大學 === 金融研究所 === 101 === This dissertation consists of two essays on dynamic asset allocation with regard to dealing with estimation risk as being in different uncertainties in the mean-variance framework. The first essay concerns estimation errors from disregarding uncertain inflation in terms of the need in estimating high-dimensional input parameters for portfolio optimization. This study presents simplified and valid criteria referred to as the EGP-IMG model based on the multi-group framework to be capable of pricing inflation risk in a world of uncertainty. Empirical studies shows the proposed model indeed provides a smart way in picking worldwide ETFs that serves well to reduce the amount of costs and time in constructing a global portfolio when facing a large number of investment products. The effect of Bayesian estimation on improving estimation risk as the decision maker is subject to history sample moments for input parameters estimations is meanwhile examined. The results indicate portfolios implementing the Stein estimation and shrinkage estimators offer better performance compared with those applying the history sample estimators. It implicitly demonstrates that yielding stable estimates for means and covariances is more critical in the MV framework than getting the newest up-to-date parameters estimates for improving portfolio performance. Though short-sales constraints intuitively should hurt, they do practically contribute to uplift portfolio performance as being subject to volatile estimates of returns moments. The second essay undertakes the difficulty that the probability distribution of a portfolio's returns may not have finite moments in a lognormal-securities market, and thus leads to the arduous problem in solving the closed-form solutions for the optimal portfolio under the mean-variance framework. As being in a lognormal-securities market, this study systematically delivers a simple rule in optimization with regard to the presence of estimation risk. The simple rule is derived accordingly by means of asymptotic properties when short sales are not allowed. The consequently numerical example specifies the detailed procedures and shows that the optimal portfolio with estimation risk is not equivalent to that ignoring the existence of estimation risk. In addition, the portfolio performance based on the proposed simple rule is examined to present a better out-of-sample portfolio performance relative to the benchmarks.