Vehicle Clustering Under Surveillance Video

碩士 === 國立中興大學 === 資訊科學與工程學系所 === 101 === In this paper, we propose an automatic vehicle event clustering method for visual surveillance. Firstly, we retrieve trajectories of vehicles as features to represent motion information. To solve the length problem of computing similarity be-tween trajectorie...

Full description

Bibliographic Details
Main Authors: Guan-Jie Huang, 黃冠傑
Other Authors: Chun-Rong Huang
Format: Others
Language:en_US
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/9474ye
id ndltd-TW-101NCHU5394037
record_format oai_dc
spelling ndltd-TW-101NCHU53940372019-05-15T21:02:49Z http://ndltd.ncl.edu.tw/handle/9474ye Vehicle Clustering Under Surveillance Video 由監視視訊影片進行車輛行為分群 Guan-Jie Huang 黃冠傑 碩士 國立中興大學 資訊科學與工程學系所 101 In this paper, we propose an automatic vehicle event clustering method for visual surveillance. Firstly, we retrieve trajectories of vehicles as features to represent motion information. To solve the length problem of computing similarity be-tween trajectories, we apply information theory to model trajectories as entropy under variant motions models. Finally, a heterogeneous feature clustering method is proposed to cluster trajectories with similar behaviors. As shown in the experiments, trajectories with similar behaviors are grouped together in the same cluster. In the future, we will apply the method to separate abnormal events from various normal events. Chun-Rong Huang 黃春融 2013 學位論文 ; thesis 37 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中興大學 === 資訊科學與工程學系所 === 101 === In this paper, we propose an automatic vehicle event clustering method for visual surveillance. Firstly, we retrieve trajectories of vehicles as features to represent motion information. To solve the length problem of computing similarity be-tween trajectories, we apply information theory to model trajectories as entropy under variant motions models. Finally, a heterogeneous feature clustering method is proposed to cluster trajectories with similar behaviors. As shown in the experiments, trajectories with similar behaviors are grouped together in the same cluster. In the future, we will apply the method to separate abnormal events from various normal events.
author2 Chun-Rong Huang
author_facet Chun-Rong Huang
Guan-Jie Huang
黃冠傑
author Guan-Jie Huang
黃冠傑
spellingShingle Guan-Jie Huang
黃冠傑
Vehicle Clustering Under Surveillance Video
author_sort Guan-Jie Huang
title Vehicle Clustering Under Surveillance Video
title_short Vehicle Clustering Under Surveillance Video
title_full Vehicle Clustering Under Surveillance Video
title_fullStr Vehicle Clustering Under Surveillance Video
title_full_unstemmed Vehicle Clustering Under Surveillance Video
title_sort vehicle clustering under surveillance video
publishDate 2013
url http://ndltd.ncl.edu.tw/handle/9474ye
work_keys_str_mv AT guanjiehuang vehicleclusteringundersurveillancevideo
AT huángguānjié vehicleclusteringundersurveillancevideo
AT guanjiehuang yóujiānshìshìxùnyǐngpiànjìnxíngchēliàngxíngwèifēnqún
AT huángguānjié yóujiānshìshìxùnyǐngpiànjìnxíngchēliàngxíngwèifēnqún
_version_ 1719108331822383104