Clip Space Sample Culling for Stochastic Rasterization

碩士 === 國立交通大學 === 多媒體工程研究所 === 101 === To render realistic camera images, two effects are common : motion blur and defocus blur. We present a novel clip space culling test of stochastic rasterization of motion and defocus blur. This 2-stage test use the clip space information to reduce the samples n...

Full description

Bibliographic Details
Main Authors: Wu, Yi-Jeng, 吳怡正
Other Authors: Shih, Zen-Chung
Format: Others
Language:en_US
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/02164102420086016468
id ndltd-TW-101NCTU5641020
record_format oai_dc
spelling ndltd-TW-101NCTU56410202015-10-13T23:10:50Z http://ndltd.ncl.edu.tw/handle/02164102420086016468 Clip Space Sample Culling for Stochastic Rasterization 隨機光柵化在裁切空間下採樣點剔除技術 Wu, Yi-Jeng 吳怡正 碩士 國立交通大學 多媒體工程研究所 101 To render realistic camera images, two effects are common : motion blur and defocus blur. We present a novel clip space culling test of stochastic rasterization of motion and defocus blur. This 2-stage test use the clip space information to reduce the samples needed to be coverage tested over camera lens domain (uv) and time domain (t). First we do a rough test to get a conservative range of the camera lens uv bound, and cull the samples outside this bound. Then the second test finds a similar triangular equation for each triangle vertex in xyuvt space. Based on this equation, we cull the rest of samples outside. We present a simple method for the real-time stochastic rasterizer, and achieve a good sample test efficiency with low computation cost. Shih, Zen-Chung 施仁忠 2013 學位論文 ; thesis 34 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 多媒體工程研究所 === 101 === To render realistic camera images, two effects are common : motion blur and defocus blur. We present a novel clip space culling test of stochastic rasterization of motion and defocus blur. This 2-stage test use the clip space information to reduce the samples needed to be coverage tested over camera lens domain (uv) and time domain (t). First we do a rough test to get a conservative range of the camera lens uv bound, and cull the samples outside this bound. Then the second test finds a similar triangular equation for each triangle vertex in xyuvt space. Based on this equation, we cull the rest of samples outside. We present a simple method for the real-time stochastic rasterizer, and achieve a good sample test efficiency with low computation cost.
author2 Shih, Zen-Chung
author_facet Shih, Zen-Chung
Wu, Yi-Jeng
吳怡正
author Wu, Yi-Jeng
吳怡正
spellingShingle Wu, Yi-Jeng
吳怡正
Clip Space Sample Culling for Stochastic Rasterization
author_sort Wu, Yi-Jeng
title Clip Space Sample Culling for Stochastic Rasterization
title_short Clip Space Sample Culling for Stochastic Rasterization
title_full Clip Space Sample Culling for Stochastic Rasterization
title_fullStr Clip Space Sample Culling for Stochastic Rasterization
title_full_unstemmed Clip Space Sample Culling for Stochastic Rasterization
title_sort clip space sample culling for stochastic rasterization
publishDate 2013
url http://ndltd.ncl.edu.tw/handle/02164102420086016468
work_keys_str_mv AT wuyijeng clipspacesamplecullingforstochasticrasterization
AT wúyízhèng clipspacesamplecullingforstochasticrasterization
AT wuyijeng suíjīguāngshānhuàzàicáiqièkōngjiānxiàcǎiyàngdiǎntīchújìshù
AT wúyízhèng suíjīguāngshānhuàzàicáiqièkōngjiānxiàcǎiyàngdiǎntīchújìshù
_version_ 1718084996389928960