Summary: | 碩士 === 國立中央大學 === 環境工程研究所 === 101 === In recent years, Taiwan has progressive development in semiconductor and light-emitting diodes, and other high-tech industries. and However, at the same time, as these industries are booming, the gradual expansion of product energy resources generates the corresponding product waste year by year. Today, the face with limited resources and resource depletion will be the important research topics and in further how effectively to use the waste as the energy resources. This study focused on the reuse of waste oil sludge, which was generated by semiconductor and LED industry in the cutting process produced the mixture of waste oil and to explore the feasibility and effectiveness in recycling the reformed waste oil as adsorbents to treat the contaminated heavy metal-wastewater. The waste oil is similar to the natural zeolite component.
This experiment deals with the twelve modified adsorbents. The best adsorbents are LED obtained at calcination temperature 250 ℃ and sludge oil with acid at high calcination temperature 500 ℃. Also among all, alkali modified adsorbents are the best. Especially, for LED sludge oil with acid at high calcination temperature (500 ℃) and alkali modified adsorbents, the lead adsorption capacity reached 91.322 mg / L, and this is similar to the adsorption capacity of activated carbon. The various adsorbents have obviously different adsorption capacities for the metal ions (lead, copper and nickel) and their adsorption activities are in the following order; lead > nickel >copper. However, the different modified adsorbents have different activities for different metal ions. For instance, the modified LED sludge-adsorbent has the best adsorption for lead ion in the sludge with the high calcination temperature at 250 ℃. The sludge with the high calcination temperature at 500 ℃ has optimal adsorption effect for the nickel ion. Due to the different calcination temperatures, the different sludges have the different surface chemistry and functional groups and thus resulting in different adsorption capacities for different metal ions. The experimental results indicate that the main control variable for the sludge adsorption is not only the time, but also the pH value of the solution. The experimental results show that metal adsorption reaction in sludge almost starts when pH of the solution is higher than 3 and closer to the neutral pH, the adsorption capacity is enhanced.
|