Summary: | 碩士 === 國立成功大學 === 光電科學與工程學系 === 102 === Raman and Photoluminescence (PL) spectroscopy are widely used in many fields, including physics, chemistry, materials science, biology, semiconductor, solar cell, and medicine. Until now, there are mature commercial products. It has many advantages, such as non-contact measurements, widely usages, rapid mapping measurements, and precise analysis. To improve the scanning efficiency of these instruments, we modify the optical design based on the design of traditional spectroscopy. Here, a hole mirror was also been imported in this system. And two kinds of measurement method, X-Y measurement and R-θ measurement method are being analyzed in this design of system.
However, to verify performance of this spectroscopy, we prepared many kinds of sample for testing, such as CVD graphene, mechanical exfoliation graphene, supported and suspended graphene, hydrogen-terminated graphene, MoS2, and AlGaAs. For experimental requirement, polarized Raman spectroscopy has been used and Origin is our fitting tool for Raman or PL spectra by Lorentzian function. Rapid mapping stage plays an important role in this research, too. It helps to execute the X-Y measurement or R-θ measurement method. In final goal to these spectroscopy, cheaper, more convenience, faster, modularization design, and automatic control by computer are been expected.
|