Design and Analysis of LTPS TFTs for SOP Applications

博士 === 國立清華大學 === 電子工程研究所 === 102 === Currently, LTPS TFTs are the most important display technology of mobile devices. Owing to the superior device characteristics, active-matrix driven LTPS TFT displays offer high brightness, high efficiency, wide viewing angle and high contrast ratio. Fast respon...

Full description

Bibliographic Details
Main Authors: Lee, Te-Yu, 李淂裕
Other Authors: King, Ya-Chin
Format: Others
Language:en_US
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/51932636803143667463
id ndltd-TW-102NTHU5428004
record_format oai_dc
spelling ndltd-TW-102NTHU54280042015-10-13T22:57:41Z http://ndltd.ncl.edu.tw/handle/51932636803143667463 Design and Analysis of LTPS TFTs for SOP Applications 針對系統面板應用之低溫多晶矽薄膜電晶體之設計與特性分析 Lee, Te-Yu 李淂裕 博士 國立清華大學 電子工程研究所 102 Currently, LTPS TFTs are the most important display technology of mobile devices. Owing to the superior device characteristics, active-matrix driven LTPS TFT displays offer high brightness, high efficiency, wide viewing angle and high contrast ratio. Fast response time for moving images, ultra-thin module, low-power consumption, and low fabrication cost further fulfill the needs of portable electronics. However, LTPS TFT technology still faces many challenges in realizing the ideal display in mobile applications such as high resolution, integrated circuitry and flexible display. In this dissertation, reliability challenges of LTPS TFT technology for state-of-art mobile applications are investigated. For the high resolution liquid crystal displays, the average off-state leakage current of LTPS TFTs can be effectively suppressed by grain protrusion assisted localized FN operation. Under the increasing backlight system, asymmetric shielding gates as well as surround gate structure are proven to alleviate the drain turn-on effect caused by these floating bottom gates. For SOP applications, fully LTPS panel process compatible MNOS OTP cell with three-order read current difference, fast program efficiency, good data retention characteristics and high disturb immunity is demonstrated. For the high resolution AMOLED displays, efficient blanket boosting scheme is successfully applied to a 2.4-inch 2T1C AMOLED panel with illumination non-uniformity improving from 8.1% to 4.9%. This highly efficient trimming method can achieve uniform drive current without any additional compensation circuitry or external memory and fully compatible to current LTPS backplane for AMOLED display. King, Ya-Chin Lin, Chrong-Jung 金雅琴 林崇榮 2013 學位論文 ; thesis 99 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 博士 === 國立清華大學 === 電子工程研究所 === 102 === Currently, LTPS TFTs are the most important display technology of mobile devices. Owing to the superior device characteristics, active-matrix driven LTPS TFT displays offer high brightness, high efficiency, wide viewing angle and high contrast ratio. Fast response time for moving images, ultra-thin module, low-power consumption, and low fabrication cost further fulfill the needs of portable electronics. However, LTPS TFT technology still faces many challenges in realizing the ideal display in mobile applications such as high resolution, integrated circuitry and flexible display. In this dissertation, reliability challenges of LTPS TFT technology for state-of-art mobile applications are investigated. For the high resolution liquid crystal displays, the average off-state leakage current of LTPS TFTs can be effectively suppressed by grain protrusion assisted localized FN operation. Under the increasing backlight system, asymmetric shielding gates as well as surround gate structure are proven to alleviate the drain turn-on effect caused by these floating bottom gates. For SOP applications, fully LTPS panel process compatible MNOS OTP cell with three-order read current difference, fast program efficiency, good data retention characteristics and high disturb immunity is demonstrated. For the high resolution AMOLED displays, efficient blanket boosting scheme is successfully applied to a 2.4-inch 2T1C AMOLED panel with illumination non-uniformity improving from 8.1% to 4.9%. This highly efficient trimming method can achieve uniform drive current without any additional compensation circuitry or external memory and fully compatible to current LTPS backplane for AMOLED display.
author2 King, Ya-Chin
author_facet King, Ya-Chin
Lee, Te-Yu
李淂裕
author Lee, Te-Yu
李淂裕
spellingShingle Lee, Te-Yu
李淂裕
Design and Analysis of LTPS TFTs for SOP Applications
author_sort Lee, Te-Yu
title Design and Analysis of LTPS TFTs for SOP Applications
title_short Design and Analysis of LTPS TFTs for SOP Applications
title_full Design and Analysis of LTPS TFTs for SOP Applications
title_fullStr Design and Analysis of LTPS TFTs for SOP Applications
title_full_unstemmed Design and Analysis of LTPS TFTs for SOP Applications
title_sort design and analysis of ltps tfts for sop applications
publishDate 2013
url http://ndltd.ncl.edu.tw/handle/51932636803143667463
work_keys_str_mv AT leeteyu designandanalysisofltpstftsforsopapplications
AT lǐdéyù designandanalysisofltpstftsforsopapplications
AT leeteyu zhēnduìxìtǒngmiànbǎnyīngyòngzhīdīwēnduōjīngxìbáomódiànjīngtǐzhīshèjìyǔtèxìngfēnxī
AT lǐdéyù zhēnduìxìtǒngmiànbǎnyīngyòngzhīdīwēnduōjīngxìbáomódiànjīngtǐzhīshèjìyǔtèxìngfēnxī
_version_ 1718084019889897472