Dispersion Compensation Using Silicon Wire Microring Resonators

碩士 === 國立臺灣科技大學 === 電子工程系 === 102 === A silicon-on-insulator based waveguide platform has demonstrated its fully compatible processing with the complementary metal-oxide-semiconductor (CMOS) standard process besides the high efficiency, high quality and low cost. Therefore, it is extensively utilize...

Full description

Bibliographic Details
Main Authors: JENG-CHIN FENG, 馮政欽
Other Authors: Shih-Hsiang Hsu
Format: Others
Language:zh-TW
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/13763967563958487657
Description
Summary:碩士 === 國立臺灣科技大學 === 電子工程系 === 102 === A silicon-on-insulator based waveguide platform has demonstrated its fully compatible processing with the complementary metal-oxide-semiconductor (CMOS) standard process besides the high efficiency, high quality and low cost. Therefore, it is extensively utilized to construct the optoelectronic devices for the applications of higher speed and lower power consumption. Moreover, the large refractive index difference between silicon and silicon dioxide layers can significantly reduce the waveguide size to submicron scale, named as the silicon wire. Then the optical microring resonator (MRR) with its high quality factor owns the potential of highly integrated photonic circuits for optical communications. Due to the small footprint and excellent optical performance, the MRR has become an important device unit in integrated photonics and is attractive in dispersion compensation applications. In this thesis, the chromatic dispersion (CD) characterization of MRR is analyzed using the optical power transmission derivation. There are two main factors in determining CD, the microring coupling coefficient and its circumstance. The CD value, bandwidth, and free spectral range from MRR are analytically illustrated for CD compensation. Fiber dispersion is one of the main factors limiting the optical signal transmission quality and distance. The dynamic CD compensation for high-speed optical communication systems is an urgent need to resolve this issue. An accurate CD characterization technique is crucial to precisely manipulating CD compensation. In the broadband coupling consideration, the Mach-Zehnder directional coupler (MZDC) will be designed and implemented on MRR for wavelength division multiplexing (WDM) CD compensation. In this thesis, the CD monitoring by delayed Mach-Zehnder interferometer and CD compensation using MZDC coupled MRR will be utilized to demonstrate the 50-GHz free spectrum range (FSR) of MRR and 1500 ps/nm.