Ru/Cd0.1SnxZn0.9-2xS Photocatalysts Prepared by Hydrothermal Method for Hydrogen Production via Water-Splitting Reaction under Visible Light Irradiation

碩士 === 大同大學 === 化學工程學系(所) === 102 === In this research, 3 chemical compounds Cd(NO3)2, Zn(CH3COO)2 and SnCl4 are used as precursors, and after they are mixed separately in different proportions (x=0.01~0.09), hydrothermal method in used to prepare the photocatalyst Cd0.1SnxZn0.9-2xS; besides, the pr...

Full description

Bibliographic Details
Main Authors: Hsing-Te Chang, 張性德
Other Authors: Ien-Whei Chen
Format: Others
Language:zh-TW
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/53812798284648449202
id ndltd-TW-102TTU05063001
record_format oai_dc
spelling ndltd-TW-102TTU050630012016-02-28T04:20:20Z http://ndltd.ncl.edu.tw/handle/53812798284648449202 Ru/Cd0.1SnxZn0.9-2xS Photocatalysts Prepared by Hydrothermal Method for Hydrogen Production via Water-Splitting Reaction under Visible Light Irradiation 水熱法製備Ru/Cd0.1SnxZn0.9-2xS光觸媒以應用於可見光照射水裂解產氫反應 Hsing-Te Chang 張性德 碩士 大同大學 化學工程學系(所) 102 In this research, 3 chemical compounds Cd(NO3)2, Zn(CH3COO)2 and SnCl4 are used as precursors, and after they are mixed separately in different proportions (x=0.01~0.09), hydrothermal method in used to prepare the photocatalyst Cd0.1SnxZn0.9-2xS; besides, the pre-wet impregnation method is utilized to carry the co-catalyst Ru so as to enhance the overall activity and the hydrogen production efficiency of the photocatalyst. After the preparation, the structures and the characteristics of the photocatalysts are analyzed by means of the X-ray diffraction analyzer (XRD), ultraviolet light-visible light spectrum analyzer (UV-Vis) and field-emmision electromicroscope (FE-SEM). At first, from the result of XRD, it is known that as x=0.01 and the preparation temperature is 160℃, the photocatalyst Cd0.1Sn0.01Zn0.88S processes the best crystalline structure; in addition, as the x value of the photocatalyst Cd0.1SnxZn0.9-2xS becomes larger, the diffraction peak angle shift to be larger. From the result of UV-Vis, it is known that as the proportions of Sn and Zn are different, the critical wavelengths are caused to shift, and with the increase of Sn content, the red transitions of the critical wavelengths are caused to produce; besides, as x=0.01, maximum critical wavelength is about 500 nm, with the energy gap of about 2.48 eV. Furthermore, from the EDS identifications, it is known separately that the actual composition of the photocatalyst is confirmed to be Cd0.1SnxZn0.9-2xS. Finally, from FE-SEM, it is known that the grain particle of photocatalyst is completely of the spherical structure, and with different preparation temperatures and Sn contents, the particle diameter sizes also change. From the experimental result, it is known that with the proportion of x=0.01, at the preparation temperature is 160℃, the photocatalyst Cd0.1Sn0.01Zn0.88S processes the best reaction activity; and as it is carried with 0.5 wt% co-catalyst of Ru, the hydrogen production rate can reach to 770 μmole/h. Ien-Whei Chen 陳炎輝 2014 學位論文 ; thesis 89 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 大同大學 === 化學工程學系(所) === 102 === In this research, 3 chemical compounds Cd(NO3)2, Zn(CH3COO)2 and SnCl4 are used as precursors, and after they are mixed separately in different proportions (x=0.01~0.09), hydrothermal method in used to prepare the photocatalyst Cd0.1SnxZn0.9-2xS; besides, the pre-wet impregnation method is utilized to carry the co-catalyst Ru so as to enhance the overall activity and the hydrogen production efficiency of the photocatalyst. After the preparation, the structures and the characteristics of the photocatalysts are analyzed by means of the X-ray diffraction analyzer (XRD), ultraviolet light-visible light spectrum analyzer (UV-Vis) and field-emmision electromicroscope (FE-SEM). At first, from the result of XRD, it is known that as x=0.01 and the preparation temperature is 160℃, the photocatalyst Cd0.1Sn0.01Zn0.88S processes the best crystalline structure; in addition, as the x value of the photocatalyst Cd0.1SnxZn0.9-2xS becomes larger, the diffraction peak angle shift to be larger. From the result of UV-Vis, it is known that as the proportions of Sn and Zn are different, the critical wavelengths are caused to shift, and with the increase of Sn content, the red transitions of the critical wavelengths are caused to produce; besides, as x=0.01, maximum critical wavelength is about 500 nm, with the energy gap of about 2.48 eV. Furthermore, from the EDS identifications, it is known separately that the actual composition of the photocatalyst is confirmed to be Cd0.1SnxZn0.9-2xS. Finally, from FE-SEM, it is known that the grain particle of photocatalyst is completely of the spherical structure, and with different preparation temperatures and Sn contents, the particle diameter sizes also change. From the experimental result, it is known that with the proportion of x=0.01, at the preparation temperature is 160℃, the photocatalyst Cd0.1Sn0.01Zn0.88S processes the best reaction activity; and as it is carried with 0.5 wt% co-catalyst of Ru, the hydrogen production rate can reach to 770 μmole/h.
author2 Ien-Whei Chen
author_facet Ien-Whei Chen
Hsing-Te Chang
張性德
author Hsing-Te Chang
張性德
spellingShingle Hsing-Te Chang
張性德
Ru/Cd0.1SnxZn0.9-2xS Photocatalysts Prepared by Hydrothermal Method for Hydrogen Production via Water-Splitting Reaction under Visible Light Irradiation
author_sort Hsing-Te Chang
title Ru/Cd0.1SnxZn0.9-2xS Photocatalysts Prepared by Hydrothermal Method for Hydrogen Production via Water-Splitting Reaction under Visible Light Irradiation
title_short Ru/Cd0.1SnxZn0.9-2xS Photocatalysts Prepared by Hydrothermal Method for Hydrogen Production via Water-Splitting Reaction under Visible Light Irradiation
title_full Ru/Cd0.1SnxZn0.9-2xS Photocatalysts Prepared by Hydrothermal Method for Hydrogen Production via Water-Splitting Reaction under Visible Light Irradiation
title_fullStr Ru/Cd0.1SnxZn0.9-2xS Photocatalysts Prepared by Hydrothermal Method for Hydrogen Production via Water-Splitting Reaction under Visible Light Irradiation
title_full_unstemmed Ru/Cd0.1SnxZn0.9-2xS Photocatalysts Prepared by Hydrothermal Method for Hydrogen Production via Water-Splitting Reaction under Visible Light Irradiation
title_sort ru/cd0.1snxzn0.9-2xs photocatalysts prepared by hydrothermal method for hydrogen production via water-splitting reaction under visible light irradiation
publishDate 2014
url http://ndltd.ncl.edu.tw/handle/53812798284648449202
work_keys_str_mv AT hsingtechang rucd01snxzn092xsphotocatalystspreparedbyhydrothermalmethodforhydrogenproductionviawatersplittingreactionundervisiblelightirradiation
AT zhāngxìngdé rucd01snxzn092xsphotocatalystspreparedbyhydrothermalmethodforhydrogenproductionviawatersplittingreactionundervisiblelightirradiation
AT hsingtechang shuǐrèfǎzhìbèirucd01snxzn092xsguāngchùméiyǐyīngyòngyúkějiànguāngzhàoshèshuǐlièjiěchǎnqīngfǎnyīng
AT zhāngxìngdé shuǐrèfǎzhìbèirucd01snxzn092xsguāngchùméiyǐyīngyòngyúkějiànguāngzhàoshèshuǐlièjiěchǎnqīngfǎnyīng
_version_ 1718195925410643968