THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERY ON CHARGE AND DISCHARGE STATE BY EXTENDED KALMAN FILTER

碩士 === 大同大學 === 電機工程學系(所) === 102 === To increase the life of the lithium-ion battery,and to improvethe safety andefficiency of the battery used, the accurate determination the battery's capacity is very important. Because of the complexity chemical and physical processes, the battery infor...

Full description

Bibliographic Details
Main Authors: Teng-yao Chang, 張登堯
Other Authors: Chung-chun Kung
Format: Others
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/88q2n9
id ndltd-TW-102TTU05442029
record_format oai_dc
spelling ndltd-TW-102TTU054420292019-05-15T21:32:55Z http://ndltd.ncl.edu.tw/handle/88q2n9 THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERY ON CHARGE AND DISCHARGE STATE BY EXTENDED KALMAN FILTER 應用擴展式卡爾曼濾波器於鋰離子電池在充電及放電狀態下之殘電量估測 Teng-yao Chang 張登堯 碩士 大同大學 電機工程學系(所) 102 To increase the life of the lithium-ion battery,and to improvethe safety andefficiency of the battery used, the accurate determination the battery's capacity is very important. Because of the complexity chemical and physical processes, the battery information that we can use is fewer and fewer. So estimation the state of charge is very difficult. In order to determine the state of charge, open-circuit voltage and battery's internal resistance are the important parameters for estimation the state of charge. Accurate estimation the state of charge can avoid over charging and discharging, improve battery performance and extend battery life. However, for batteries, the state during charging and discharging are not the same, this thesis using the equivalent circuit model(ECM) to approximate characteristic of the Li-ion battery. In order to obtain the unknown parameters of the ECM, the open circuit voltage (OCV) test and direct current internal resistance (DCIR)testare used to find the relationship between the parameters and SOC of the Li-ion battery.From the experiments results, we can find the relationship between the parameters and SOC of the Li-ion battery is a nonlinear, and the initial values will affect the accuracy of the SOC estimation. These problems can be effectively improved by the extended kalman filtering. Therefore, in this thesis we use the extended kalman filtering(EKF) to estimate the SOC of the Li-ion battery, andreduce the impact of SOC estimation by parameters errors and the dependence of the initial values. Finallythrough simulations and experimental results to validate the accuracy for ECM, and confirm the effective of EKF. Chung-chun Kung 龔宗鈞 2014 學位論文 ; thesis 74
collection NDLTD
format Others
sources NDLTD
description 碩士 === 大同大學 === 電機工程學系(所) === 102 === To increase the life of the lithium-ion battery,and to improvethe safety andefficiency of the battery used, the accurate determination the battery's capacity is very important. Because of the complexity chemical and physical processes, the battery information that we can use is fewer and fewer. So estimation the state of charge is very difficult. In order to determine the state of charge, open-circuit voltage and battery's internal resistance are the important parameters for estimation the state of charge. Accurate estimation the state of charge can avoid over charging and discharging, improve battery performance and extend battery life. However, for batteries, the state during charging and discharging are not the same, this thesis using the equivalent circuit model(ECM) to approximate characteristic of the Li-ion battery. In order to obtain the unknown parameters of the ECM, the open circuit voltage (OCV) test and direct current internal resistance (DCIR)testare used to find the relationship between the parameters and SOC of the Li-ion battery.From the experiments results, we can find the relationship between the parameters and SOC of the Li-ion battery is a nonlinear, and the initial values will affect the accuracy of the SOC estimation. These problems can be effectively improved by the extended kalman filtering. Therefore, in this thesis we use the extended kalman filtering(EKF) to estimate the SOC of the Li-ion battery, andreduce the impact of SOC estimation by parameters errors and the dependence of the initial values. Finallythrough simulations and experimental results to validate the accuracy for ECM, and confirm the effective of EKF.
author2 Chung-chun Kung
author_facet Chung-chun Kung
Teng-yao Chang
張登堯
author Teng-yao Chang
張登堯
spellingShingle Teng-yao Chang
張登堯
THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERY ON CHARGE AND DISCHARGE STATE BY EXTENDED KALMAN FILTER
author_sort Teng-yao Chang
title THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERY ON CHARGE AND DISCHARGE STATE BY EXTENDED KALMAN FILTER
title_short THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERY ON CHARGE AND DISCHARGE STATE BY EXTENDED KALMAN FILTER
title_full THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERY ON CHARGE AND DISCHARGE STATE BY EXTENDED KALMAN FILTER
title_fullStr THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERY ON CHARGE AND DISCHARGE STATE BY EXTENDED KALMAN FILTER
title_full_unstemmed THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERY ON CHARGE AND DISCHARGE STATE BY EXTENDED KALMAN FILTER
title_sort state of charge estimation for li-ion battery on charge and discharge state by extended kalman filter
publishDate 2014
url http://ndltd.ncl.edu.tw/handle/88q2n9
work_keys_str_mv AT tengyaochang thestateofchargeestimationforliionbatteryonchargeanddischargestatebyextendedkalmanfilter
AT zhāngdēngyáo thestateofchargeestimationforliionbatteryonchargeanddischargestatebyextendedkalmanfilter
AT tengyaochang yīngyòngkuòzhǎnshìkǎěrmànlǜbōqìyúlǐlízidiànchízàichōngdiànjífàngdiànzhuàngtàixiàzhīcándiànliànggūcè
AT zhāngdēngyáo yīngyòngkuòzhǎnshìkǎěrmànlǜbōqìyúlǐlízidiànchízàichōngdiànjífàngdiànzhuàngtàixiàzhīcándiànliànggūcè
AT tengyaochang stateofchargeestimationforliionbatteryonchargeanddischargestatebyextendedkalmanfilter
AT zhāngdēngyáo stateofchargeestimationforliionbatteryonchargeanddischargestatebyextendedkalmanfilter
_version_ 1719117362422087680