Developing integrated evolutionary approaches to improve process mining fitness for noise-free and noisy logs

博士 === 國立臺灣科技大學 === 工業管理系 === 103 === With the changes of information technology, the complexity of the development of business activities has increased markedly. To understand the connotative information of complex business processes is difficult. A process model is a way that can describe the inte...

Full description

Bibliographic Details
Main Authors: Hsin-Jung Cheng, 鄭歆蓉
Other Authors: Chao Ou-Yang
Format: Others
Language:en_US
Published: 2015
Online Access:http://ndltd.ncl.edu.tw/handle/19652768192393448280
id ndltd-TW-103NTUS5041112
record_format oai_dc
spelling ndltd-TW-103NTUS50411122017-03-11T04:22:00Z http://ndltd.ncl.edu.tw/handle/19652768192393448280 Developing integrated evolutionary approaches to improve process mining fitness for noise-free and noisy logs 發展整合性演化式方法於無雜訊與有雜訊事件記錄檔之流程探勘適應值改善 Hsin-Jung Cheng 鄭歆蓉 博士 國立臺灣科技大學 工業管理系 103 With the changes of information technology, the complexity of the development of business activities has increased markedly. To understand the connotative information of complex business processes is difficult. A process model is a way that can describe the internal activities or behavior in businesses. Process mining (PM) is a technique to extract a process model from an event log to represent the process behavior recorded in that event log. A mined process model with high fitness means that it can reflect most of the process behavior recorded in the event log. Previous studies have shown that the mined model with high fitness can be used in process improvement, such as fraud detection, continuous process improvement, and benchmarking. Additionally, event logs may contain incomplete or incorrect process data. Such logs are called noisy logs. Therefore, this dissertation aims to study the discovery of process models with high fitness for noise-free and noisy event logs. Firstly, this dissertation considers discovering parallel (AND) structures in PM. There are several problematic structures in PM, including parallel (AND) structures, exclusive-choice (XOR) structures, non-free-choice structures, loops, and noise. Some PM approaches have been conducted to address only one or a few problematic structures. Genetic process mining (GPM) is a well-known PM method which can simultaneously handle most of the problematic structures. However, GPM still cannot effectively discover parallel structures from noise-free logs. This dissertation proposes a PM approach based on integration of GPM, particle swarm optimization (PSO), and differential evolution (DE) to find process models with high fitness for noise-free logs involving multiple parallel structures. The results show that the proposed approach does indeed lead to improvement in gaining process models with high fitness for event logs involving multiple parallel structures. Secondly, this dissertation considers discovering process models from noisy logs. In some industries (such as hospitals), data must sometimes be manually recorded and data concerning some tasks that are performed during emergency situations may be missing. Manual logging may result in logging errors. Missing events result in incomplete logs. Therefore, event logs may contain incorrect process data. These logs are called noisy logs. This dissertation develops a PSOSA approach that combines particle swarm optimization (PSO) with simulated annealing (SA) to discover process models with high fitness from noisy logs. The results achieved using this PSOSA approach reveal that it improves fitness of process models found using noisy logs. Chao Ou-Yang 歐陽超 2015 學位論文 ; thesis 87 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 博士 === 國立臺灣科技大學 === 工業管理系 === 103 === With the changes of information technology, the complexity of the development of business activities has increased markedly. To understand the connotative information of complex business processes is difficult. A process model is a way that can describe the internal activities or behavior in businesses. Process mining (PM) is a technique to extract a process model from an event log to represent the process behavior recorded in that event log. A mined process model with high fitness means that it can reflect most of the process behavior recorded in the event log. Previous studies have shown that the mined model with high fitness can be used in process improvement, such as fraud detection, continuous process improvement, and benchmarking. Additionally, event logs may contain incomplete or incorrect process data. Such logs are called noisy logs. Therefore, this dissertation aims to study the discovery of process models with high fitness for noise-free and noisy event logs. Firstly, this dissertation considers discovering parallel (AND) structures in PM. There are several problematic structures in PM, including parallel (AND) structures, exclusive-choice (XOR) structures, non-free-choice structures, loops, and noise. Some PM approaches have been conducted to address only one or a few problematic structures. Genetic process mining (GPM) is a well-known PM method which can simultaneously handle most of the problematic structures. However, GPM still cannot effectively discover parallel structures from noise-free logs. This dissertation proposes a PM approach based on integration of GPM, particle swarm optimization (PSO), and differential evolution (DE) to find process models with high fitness for noise-free logs involving multiple parallel structures. The results show that the proposed approach does indeed lead to improvement in gaining process models with high fitness for event logs involving multiple parallel structures. Secondly, this dissertation considers discovering process models from noisy logs. In some industries (such as hospitals), data must sometimes be manually recorded and data concerning some tasks that are performed during emergency situations may be missing. Manual logging may result in logging errors. Missing events result in incomplete logs. Therefore, event logs may contain incorrect process data. These logs are called noisy logs. This dissertation develops a PSOSA approach that combines particle swarm optimization (PSO) with simulated annealing (SA) to discover process models with high fitness from noisy logs. The results achieved using this PSOSA approach reveal that it improves fitness of process models found using noisy logs.
author2 Chao Ou-Yang
author_facet Chao Ou-Yang
Hsin-Jung Cheng
鄭歆蓉
author Hsin-Jung Cheng
鄭歆蓉
spellingShingle Hsin-Jung Cheng
鄭歆蓉
Developing integrated evolutionary approaches to improve process mining fitness for noise-free and noisy logs
author_sort Hsin-Jung Cheng
title Developing integrated evolutionary approaches to improve process mining fitness for noise-free and noisy logs
title_short Developing integrated evolutionary approaches to improve process mining fitness for noise-free and noisy logs
title_full Developing integrated evolutionary approaches to improve process mining fitness for noise-free and noisy logs
title_fullStr Developing integrated evolutionary approaches to improve process mining fitness for noise-free and noisy logs
title_full_unstemmed Developing integrated evolutionary approaches to improve process mining fitness for noise-free and noisy logs
title_sort developing integrated evolutionary approaches to improve process mining fitness for noise-free and noisy logs
publishDate 2015
url http://ndltd.ncl.edu.tw/handle/19652768192393448280
work_keys_str_mv AT hsinjungcheng developingintegratedevolutionaryapproachestoimproveprocessminingfitnessfornoisefreeandnoisylogs
AT zhèngxīnróng developingintegratedevolutionaryapproachestoimproveprocessminingfitnessfornoisefreeandnoisylogs
AT hsinjungcheng fāzhǎnzhěnghéxìngyǎnhuàshìfāngfǎyúwúzáxùnyǔyǒuzáxùnshìjiànjìlùdàngzhīliúchéngtànkānshìyīngzhígǎishàn
AT zhèngxīnróng fāzhǎnzhěnghéxìngyǎnhuàshìfāngfǎyúwúzáxùnyǔyǒuzáxùnshìjiànjìlùdàngzhīliúchéngtànkānshìyīngzhígǎishàn
_version_ 1718421283260071936