The Study of Microstructures of Concrete Subject to Elevated Temperatures in conjunction of Ultrasonic Pulse Velocity and Acoustic Emission Tests

碩士 === 國立高雄應用科技大學 === 土木工程與防災科技研究所 === 104 === The research objective was to evaluate Ordinary Portland Cement concrete subject to various elevated temperatures. Single OPC concrete mixture with water to cementitious (w/c) equal to 0.51 was proportioned. Concrete specimens were cast and placed i...

Full description

Bibliographic Details
Main Authors: CHEN, GUAN-YING, 陳冠穎
Other Authors: SU, YU-MIN
Format: Others
Language:zh-TW
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/69855567798240587342
id ndltd-TW-104KUAS0653128
record_format oai_dc
spelling ndltd-TW-104KUAS06531282016-12-22T04:19:21Z http://ndltd.ncl.edu.tw/handle/69855567798240587342 The Study of Microstructures of Concrete Subject to Elevated Temperatures in conjunction of Ultrasonic Pulse Velocity and Acoustic Emission Tests 應用超音波及音射法評估實驗室模擬火害前後與再水化水泥混凝土微觀結構 CHEN, GUAN-YING 陳冠穎 碩士 國立高雄應用科技大學 土木工程與防災科技研究所 104 The research objective was to evaluate Ordinary Portland Cement concrete subject to various elevated temperatures. Single OPC concrete mixture with water to cementitious (w/c) equal to 0.51 was proportioned. Concrete specimens were cast and placed in the curing tank in which water was saturated with calcium hydroxide. After ninety days of moist-cure, three elevated temperatures, namely 300, 600, and 900-°C, were carried out upon hardened concrete specimens. Furthermore, two post-damaged conditions were executed to recover damaged concrete specimens: one was to re-cure under 23°C with 50% humidity in a controlled environmental chamber and the other was to re-cure in the same curing tank. Mechanical properties including compressive strength as well as nondestructive approaches including ultrasonic pulse velocity and acoustic emission tests were performed on both damaged and recovered concrete specimens. The experimental results showed that concrete specimens expanded in volume, lost in weight, and observed more surface cracks, as temperature elevated to 300, 600, and 900-°C. The compressive strength decreases 107.4, 51.1, and 16.0-% as well as ultrasonic pulse velocity declined 87.2, 45.6, and 22.8-%, as temperature increased. It has to be noted that the compressive strength was found to increase when the concrete specimens were subject to 300°C. Further study may be needed to investigate. However, compressive strengths were found more and less proportional to the UPV data, as higher temperatures elevated to 600 and 900-°C. Acoustic emission apparatus coupled with the splitting tensile test was found able to assess damaged concrete. Before concrete subject to elevated temperatures, the development of indirect tensile strength versus displacement diagram fit well with the tendency of AE energy release. It was found there was a large amount of AE energy released when stress and displacement diagram developed about 40-50%. As such could be identified as the onset of fracture and the plain concrete generally exhibited a quasi-brittle fracture; however when concrete specimens were subject to elevated temperatures, neither the damaged nor recovered concrete specimens displayed the similar fracture pattern of plain concrete. SU, YU-MIN 蘇育民 2016 學位論文 ; thesis 140 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立高雄應用科技大學 === 土木工程與防災科技研究所 === 104 === The research objective was to evaluate Ordinary Portland Cement concrete subject to various elevated temperatures. Single OPC concrete mixture with water to cementitious (w/c) equal to 0.51 was proportioned. Concrete specimens were cast and placed in the curing tank in which water was saturated with calcium hydroxide. After ninety days of moist-cure, three elevated temperatures, namely 300, 600, and 900-°C, were carried out upon hardened concrete specimens. Furthermore, two post-damaged conditions were executed to recover damaged concrete specimens: one was to re-cure under 23°C with 50% humidity in a controlled environmental chamber and the other was to re-cure in the same curing tank. Mechanical properties including compressive strength as well as nondestructive approaches including ultrasonic pulse velocity and acoustic emission tests were performed on both damaged and recovered concrete specimens. The experimental results showed that concrete specimens expanded in volume, lost in weight, and observed more surface cracks, as temperature elevated to 300, 600, and 900-°C. The compressive strength decreases 107.4, 51.1, and 16.0-% as well as ultrasonic pulse velocity declined 87.2, 45.6, and 22.8-%, as temperature increased. It has to be noted that the compressive strength was found to increase when the concrete specimens were subject to 300°C. Further study may be needed to investigate. However, compressive strengths were found more and less proportional to the UPV data, as higher temperatures elevated to 600 and 900-°C. Acoustic emission apparatus coupled with the splitting tensile test was found able to assess damaged concrete. Before concrete subject to elevated temperatures, the development of indirect tensile strength versus displacement diagram fit well with the tendency of AE energy release. It was found there was a large amount of AE energy released when stress and displacement diagram developed about 40-50%. As such could be identified as the onset of fracture and the plain concrete generally exhibited a quasi-brittle fracture; however when concrete specimens were subject to elevated temperatures, neither the damaged nor recovered concrete specimens displayed the similar fracture pattern of plain concrete.
author2 SU, YU-MIN
author_facet SU, YU-MIN
CHEN, GUAN-YING
陳冠穎
author CHEN, GUAN-YING
陳冠穎
spellingShingle CHEN, GUAN-YING
陳冠穎
The Study of Microstructures of Concrete Subject to Elevated Temperatures in conjunction of Ultrasonic Pulse Velocity and Acoustic Emission Tests
author_sort CHEN, GUAN-YING
title The Study of Microstructures of Concrete Subject to Elevated Temperatures in conjunction of Ultrasonic Pulse Velocity and Acoustic Emission Tests
title_short The Study of Microstructures of Concrete Subject to Elevated Temperatures in conjunction of Ultrasonic Pulse Velocity and Acoustic Emission Tests
title_full The Study of Microstructures of Concrete Subject to Elevated Temperatures in conjunction of Ultrasonic Pulse Velocity and Acoustic Emission Tests
title_fullStr The Study of Microstructures of Concrete Subject to Elevated Temperatures in conjunction of Ultrasonic Pulse Velocity and Acoustic Emission Tests
title_full_unstemmed The Study of Microstructures of Concrete Subject to Elevated Temperatures in conjunction of Ultrasonic Pulse Velocity and Acoustic Emission Tests
title_sort study of microstructures of concrete subject to elevated temperatures in conjunction of ultrasonic pulse velocity and acoustic emission tests
publishDate 2016
url http://ndltd.ncl.edu.tw/handle/69855567798240587342
work_keys_str_mv AT chenguanying thestudyofmicrostructuresofconcretesubjecttoelevatedtemperaturesinconjunctionofultrasonicpulsevelocityandacousticemissiontests
AT chénguānyǐng thestudyofmicrostructuresofconcretesubjecttoelevatedtemperaturesinconjunctionofultrasonicpulsevelocityandacousticemissiontests
AT chenguanying yīngyòngchāoyīnbōjíyīnshèfǎpínggūshíyànshìmónǐhuǒhàiqiánhòuyǔzàishuǐhuàshuǐníhùnníngtǔwēiguānjiégòu
AT chénguānyǐng yīngyòngchāoyīnbōjíyīnshèfǎpínggūshíyànshìmónǐhuǒhàiqiánhòuyǔzàishuǐhuàshuǐníhùnníngtǔwēiguānjiégòu
AT chenguanying studyofmicrostructuresofconcretesubjecttoelevatedtemperaturesinconjunctionofultrasonicpulsevelocityandacousticemissiontests
AT chénguānyǐng studyofmicrostructuresofconcretesubjecttoelevatedtemperaturesinconjunctionofultrasonicpulsevelocityandacousticemissiontests
_version_ 1718405419484839936