Fabrication of nano-carbon/PEDOT:PSS hybrid thin films for flexible transparent conductive electrodes and all-solid-state supercapacitors

碩士 === 國立成功大學 === 化學工程學系 === 104 === This thesis concerns the developments of flexible transparent conductive electrodes and supercapacitors using carbon nanotube (CNT), reduced graphene oxide, and their hybrids with conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PS...

Full description

Bibliographic Details
Main Authors: Jun-YiWu, 吳俊逸
Other Authors: Dong-Hwang Chen
Format: Others
Language:zh-TW
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/36eb6g
Description
Summary:碩士 === 國立成功大學 === 化學工程學系 === 104 === This thesis concerns the developments of flexible transparent conductive electrodes and supercapacitors using carbon nanotube (CNT), reduced graphene oxide, and their hybrids with conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). At first, the CNT and rGO-based thin films were fabricated as flexible transparent conductive electrodes by the blade-coating of CNT or graphene oxide (GO) dispersion on polyethylene terephthalate (PET) and the followed GO reduction with hydroiodic acid for the case of GO. The decreases of transmittance and sheet resistance with the increase of layer numbers have been described. Secondly, CNT or GO (0~0.1wt%) was added to the equal volume mixture of PEDOT:PSS and dimethyl sulfoxide (DMSO) to yield homogeneous dispersions. For the case of GO, the dispersion was further microwave-treated to obtain the rGO dispersion. Then, the CNT or rGO dispersion was blade-coated on PET to form the CNT/PEDOT:PSS or rGO/PEDOT:PSS hybrid thin films as flexible transparent conductive electrodes. It was found that the appropriate addition of CNT or rGO indeed could effectively enhance the conductivity via the formation of conductive network. The lowest sheet resistance around 1000 Ω with a transmittance above 80% was obtained for both the hybrid thin films. Finally, it was demonstrated that both the CNT/PEDOT:PSS and rGO/PEDOT:PSS hybrid thin films also could be used as the electrodes for supercapacitors. The capacitance could be raised by appropriately increasing the thickness of hybrid thin films. Furthermore, the flexible transparent all-solid-state supercapacitors were fabricated with polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel electrolyte between two CNT/PEDOT:PSS or rGO/PEDOT:PSS hybrid thin film-based electrodes. It was found that both the resulting supercapacitors had transmittances above 56% and could be quickly charged and discharged. Also, their electrochemical performance could be retained while bending. All the results revealed that both the CNT/PEDOT:PSS and rGO/PEDOT:PSS hybrid thin films could be developed as good electrode materials for flexible transparent supercapacitors.