Recent Progress on the Large Sieve with Sparse Sets of Moduli and Its Application to Square Moduli
碩士 === 國立交通大學 === 應用數學系所 === 104 === The large sieve inequality for square moduli has the following form: \[ \sum_{q=1}^Q\sum_{\substack{a~\mathrm{mod}~q^2\\\mathrm{gcd}(a,q)=1}} \left|\sum_{n=M+1}^{M+N} a_ne\left( \frac{a}{q^2}n\right) \right|^2\ll\Delta \sum_{n=M+1}^{M+N} \left| a_n\right|^2. \] F...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2015
|
Online Access: | http://ndltd.ncl.edu.tw/handle/60760829604233832540 |
id |
ndltd-TW-104NCTU5507002 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-104NCTU55070022017-09-15T04:40:14Z http://ndltd.ncl.edu.tw/handle/60760829604233832540 Recent Progress on the Large Sieve with Sparse Sets of Moduli and Its Application to Square Moduli 大篩其稀疏集合之元素為模數及其在平方模數之應用的新進展 Chew, Xiao-Xian 周孝賢 碩士 國立交通大學 應用數學系所 104 The large sieve inequality for square moduli has the following form: \[ \sum_{q=1}^Q\sum_{\substack{a~\mathrm{mod}~q^2\\\mathrm{gcd}(a,q)=1}} \left|\sum_{n=M+1}^{M+N} a_ne\left( \frac{a}{q^2}n\right) \right|^2\ll\Delta \sum_{n=M+1}^{M+N} \left| a_n\right|^2. \] From the classical large sieve inequality, we can deduce two natural $\Delta$s, namely $\Delta=Q^4+N$ and $\Delta=Q(Q^2+N)$. L. Zhao \cite{Zhao 2004} gives a $\Delta$, namely $\Delta=Q^3+(N\sqrt{Q}+\sqrt{N}Q^2)N^\varepsilon$ in (\ref{Zhao's bound}), it is sharper than the former two $\Delta$s in the range $N^{2/7+\varepsilon}\ll Q\ll N^{1/2-\varepsilon}$. Extending a method of D. Wolke \cite{Wolke 1971/2}, S. Baier \cite{Baier 2006} establishes a general large sieve inequality (see Theorem \ref{thm 2:Baier} below), for the case when $\mathcal{S}$ is a sparse set of moduli which is in a certain sense well-distributed in arithmetic progressions. As an application, he then employs Theorem \ref{thm 2:Baier} with $\mathcal{S}$ consists of squares. In this case, he obtains Theorem \ref{thm 3:Baier} with a $\Delta=(\log\log10NQ)^3(Q^3+N+N^{1/2+\varepsilon}Q^2)$, it is sharper than the two natural $\Delta$s and Zhao's bound (\ref{Zhao's bound}) within the range $N^{1/4+\varepsilon}\ll Q\ll N^{1/3-\varepsilon}$. Yang, Yi-Fan 楊一帆 2015 學位論文 ; thesis 39 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立交通大學 === 應用數學系所 === 104 === The large sieve inequality for square moduli has the following form:
\[
\sum_{q=1}^Q\sum_{\substack{a~\mathrm{mod}~q^2\\\mathrm{gcd}(a,q)=1}} \left|\sum_{n=M+1}^{M+N} a_ne\left( \frac{a}{q^2}n\right) \right|^2\ll\Delta \sum_{n=M+1}^{M+N} \left| a_n\right|^2.
\]
From the classical large sieve inequality, we can deduce two natural $\Delta$s, namely $\Delta=Q^4+N$ and $\Delta=Q(Q^2+N)$. L. Zhao \cite{Zhao 2004} gives a $\Delta$, namely $\Delta=Q^3+(N\sqrt{Q}+\sqrt{N}Q^2)N^\varepsilon$ in (\ref{Zhao's bound}), it is sharper than the former two $\Delta$s in the range $N^{2/7+\varepsilon}\ll Q\ll N^{1/2-\varepsilon}$.
Extending a method of D. Wolke \cite{Wolke 1971/2}, S. Baier \cite{Baier 2006} establishes a general large sieve inequality (see Theorem \ref{thm 2:Baier} below), for the case when $\mathcal{S}$ is a sparse set of moduli which is in a certain sense well-distributed in arithmetic progressions. As an application, he then employs Theorem \ref{thm 2:Baier} with $\mathcal{S}$ consists of squares. In this case, he obtains Theorem \ref{thm 3:Baier} with a $\Delta=(\log\log10NQ)^3(Q^3+N+N^{1/2+\varepsilon}Q^2)$, it is sharper than the two natural $\Delta$s and Zhao's bound (\ref{Zhao's bound}) within the range $N^{1/4+\varepsilon}\ll Q\ll N^{1/3-\varepsilon}$.
|
author2 |
Yang, Yi-Fan |
author_facet |
Yang, Yi-Fan Chew, Xiao-Xian 周孝賢 |
author |
Chew, Xiao-Xian 周孝賢 |
spellingShingle |
Chew, Xiao-Xian 周孝賢 Recent Progress on the Large Sieve with Sparse Sets of Moduli and Its Application to Square Moduli |
author_sort |
Chew, Xiao-Xian |
title |
Recent Progress on the Large Sieve with Sparse Sets of Moduli and Its Application to Square Moduli |
title_short |
Recent Progress on the Large Sieve with Sparse Sets of Moduli and Its Application to Square Moduli |
title_full |
Recent Progress on the Large Sieve with Sparse Sets of Moduli and Its Application to Square Moduli |
title_fullStr |
Recent Progress on the Large Sieve with Sparse Sets of Moduli and Its Application to Square Moduli |
title_full_unstemmed |
Recent Progress on the Large Sieve with Sparse Sets of Moduli and Its Application to Square Moduli |
title_sort |
recent progress on the large sieve with sparse sets of moduli and its application to square moduli |
publishDate |
2015 |
url |
http://ndltd.ncl.edu.tw/handle/60760829604233832540 |
work_keys_str_mv |
AT chewxiaoxian recentprogressonthelargesievewithsparsesetsofmodulianditsapplicationtosquaremoduli AT zhōuxiàoxián recentprogressonthelargesievewithsparsesetsofmodulianditsapplicationtosquaremoduli AT chewxiaoxian dàshāiqíxīshūjíhézhīyuánsùwèimóshùjíqízàipíngfāngmóshùzhīyīngyòngdexīnjìnzhǎn AT zhōuxiàoxián dàshāiqíxīshūjíhézhīyuánsùwèimóshùjíqízàipíngfāngmóshùzhīyīngyòngdexīnjìnzhǎn |
_version_ |
1718533806306099200 |