none

碩士 === 國立中央大學 === 土木工程學系 === 104 === This study employs 3-D Particle Flow Code (PFC3D) to simulate transversely isotropic rock materials for differential orientation angle (ψ) and loading angle (β) that varies between "0°" to "90° " under Brazilian test. The majority of this stu...

Full description

Bibliographic Details
Main Authors: Cheng-yu Ma, 馬承砡
Other Authors: Yong-ming Tien
Format: Others
Language:zh-TW
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/21646904129697795801
Description
Summary:碩士 === 國立中央大學 === 土木工程學系 === 104 === This study employs 3-D Particle Flow Code (PFC3D) to simulate transversely isotropic rock materials for differential orientation angle (ψ) and loading angle (β) that varies between "0°" to "90° " under Brazilian test. The majority of this study presents the results of the numerical simulation of the failure process, failure modes and tensile strength. Before simulating transversely isotropic rock, this study also carries out the parametric studies (including the analysis of micro-parameters, thickness diameter ratio, particle size effect, displacement rate and inherent anisotropy) of isotropic rock under Brazilian test. This study simulates different orientation angles of transversely isotropic rock with different loading angles, the numerical simulate results are similar to the result of Brazilian test (Freiberger Gneiss) by Dan et al., (2013). It has shown that the orientation angle and loading angle both will affect tensile strength, and the influence of orientation angle is much larger than the influence of loading angle. The failure procedure of transversely isotropic rocks is more complex than isotropic rocks, even the same specimen has different failure mode in different slices, we observe seven major failure mode: (1) Split across layer mode; (2) Split along layer mode; (3) Split along weak layer mode; (4) Sliding along layer mode; (5) Sliding along weak layer mode; (6) Mixed mode; (7) Crush mode.