The Study of Nano-/Mirco-Structures Applied on the Light Harvest of Perovskite Solar Cells

碩士 === 國立中央大學 === 機械工程學系 === 104 === In this study, we use the self-assembly method applied on perovskite solar cell. First, we employed the two-dimensional Finite-Difference-Time-Domain (FDTD) method to evaluate the enhancement phenomenon of the nano-patterned substrate with different angles of inc...

Full description

Bibliographic Details
Main Authors: Tsu-Hsuan Chiu, 邱子軒
Other Authors: 詹佳樺
Format: Others
Language:zh-TW
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/35508598976547924539
Description
Summary:碩士 === 國立中央大學 === 機械工程學系 === 104 === In this study, we use the self-assembly method applied on perovskite solar cell. First, we employed the two-dimensional Finite-Difference-Time-Domain (FDTD) method to evaluate the enhancement phenomenon of the nano-patterned substrate with different angles of incidence. Due to the result of simulation, we found that the transmittance will be grater while light is inserted at a high angle and the substrate with larger structure period has better enhancement. Next, to produce nano-patterned substrate for perovskite solar cells, a layer of silicon dioxide film was deposited on to the glass surface of fluorine doped tin oxide substrate by the plasma enhanced chemical vapor deposition process. After the deposition process, we incorporated with the self-assembly method to arrange three different sizes of silica spheres 1000, 500, 220nm onto the silicon dioxide layer and used the reactive ion etching process to obtain patterned substrates. The measurements of transmittance by integrate sphere was completed after the fabrication of patterned substrates and we got a similar tendency with the FDTD result. During the fabrication of a solar cell, we applied the one-step method to obtain mesoscopic heterojunction perovskite solar cell with Jsc 20mA/cm2, Voc 0.95V, FF 65%, PCE 12.35% in average. In comparison with none-patterned substrates, the power conversion efficiency of the patterned substrate with a period of 1000nm is increased 4.2% when we integrate the surface under the curve from -80 to 80 degree of light incident. Thus, the patterned substrates via self-assembly method can suppress the reflection phenomenon and effectively improve the light harvest of the device at high angles of incidence. It can help to reduce optical loss and provide a faster and easier method in fabrication.