Numerical assessment of CO2 migration in anisotropic and heterogeneous saline aquifers

博士 === 國立中央大學 === 應用地質研究所 === 104 === This study simulated the natural convection of dissolved carbon dioxide (CO2) in a small-scale heterogeneous saline formation by using the ECO2N equation of state module in the TOUGHREACT model. A one-way downscaling approach that involves using a series of subm...

Full description

Bibliographic Details
Main Authors: Chi-ping Lin, 林淇平
Other Authors: Chuen-fa Ni
Format: Others
Language:en_US
Published: 2015
Online Access:http://ndltd.ncl.edu.tw/handle/94697894709992386417
Description
Summary:博士 === 國立中央大學 === 應用地質研究所 === 104 === This study simulated the natural convection of dissolved carbon dioxide (CO2) in a small-scale heterogeneous saline formation by using the ECO2N equation of state module in the TOUGHREACT model. A one-way downscaling approach that involves using a series of submodels in simulation procedures was proposed to efficiently simulate problems with high-scale discrepancies. The study evaluated the effects of different degrees of small-scale permeability variations on the vertical migration of dissolved CO2. The sequential Gaussian simulation model was used to generate unconditional random permeability fields for different natural logarithm of permeability (lnk) variations (i.e., lnk variances and correlations in x and z directions). The results showed an identical transition zone of dissolved CO2 near the top boundary, where a constant CO2 gas saturation was specified. The local permeability variations can trigger fingerings and enhance the vertical convection of the dissolved CO2. The number of fingerings depends on the variations of permeability near the front interface of the dissolved CO2 (i.e., the bottom edge of the transition zone for the dissolved CO2). However, the patterns and developments of fingerings are constrained by the permeability variations along the fingering paths. At the same mean lnk permeability, the convection fluxes increase with an increase in lnk variances. However, an increase in lateral correlations (i.e., increase in the correlation lengths in the x direction) can slightly reduce the convection fluxes at the same lnk variance. The highly variable flux rates of the dissolved CO2 occur early and the variations in the flux rate decrease with time.