Miniaturized Planar Transmission Line to Metallic Waveguide Transition and Polarizer

碩士 === 國立臺灣科技大學 === 電子工程系 === 104 === In this discourse, two compact microwave components are proposed, which include the compact and broadband CPW-to-RWG transition using the inductance compensated phase shifter and the compact microstrip-fed CWG polarizer using the corner-truncated patch. The char...

Full description

Bibliographic Details
Main Authors: Irving Tseng, 曾爾凡
Other Authors: Chun-Long Wang
Format: Others
Language:en_US
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/86062381978769320699
Description
Summary:碩士 === 國立臺灣科技大學 === 電子工程系 === 104 === In this discourse, two compact microwave components are proposed, which include the compact and broadband CPW-to-RWG transition using the inductance compensated phase shifter and the compact microstrip-fed CWG polarizer using the corner-truncated patch. The characteristics of each of them are described below. In chapter 2, firstly, a CPW-to-RWG transition using the half-wavelength phase shifter is introduced. The transition has a broadband response in which the frequency range of the -15-dB reflection coefficient covers from 8.05 GHz to 12.18 GHz (FBW = 38.8%), almost encompassing the whole X-band (8.2-12.4 GHz). In order to reduce the size of the transition, the inductance-compensated phase shifter is used to replace the half-wavelength phase shifter, resulting in a compact and broadband CPW-to-RWG transition using the inductance-compensated phase shifter. The size of transition is 5.9×10.16×0.8 mm3 and the frequency range, for which the reflection coefficient is smaller than -15 dB, covers from 8.05 GHz to 12.38 GHz, estimating to be 42.04%. In order to verify the simulation results, two CPW-to-RWG transitions using the inductance-compensated phase shifter are back-to-back connected, fabricated, and measured. The measurement and simulation results are in reasonable agreement, which verifies our design. In chapter 3, firstly, a MSL-to-CWG transition using the rectangular patch is introduced. The rectangular patch is placed 2.68 mm (0.043 λg) away from the short-circuited plane of the CWG port, making the transition very compact. Secondly, a MSL-fed CWG polarizer using the corner-truncated patch is proposed. The proposed polarizer has an axial ratio of 0.002 dB and a phase difference of -90.97° at 9.65 GHz. The reflection coefficient is below -20 dB around the center frequency 9.65 GHz. In additional, the proposed polarizer needs no complex manufacturing process on the waveguide. Moreover, since the polarizer is fed by the microstrip line, it would be easy to integrate with other planar circuits. In order to verify the simulation results, the CWG port of the MSL-fed CWG polarizer using the corner-truncated patch is opened, simulated and measured. The simulation and measurement results are in good agreement.