Traveling wave solutions for a diffusive SIR model

碩士 === 國立政治大學 === 應用數學系 === 105 ===  In this thesis, we study the existence of traveling waves of a reaction-diffusion equation for a diffusive epidemic SIR model          s_t = d_1 s_xx − βsi/(s + i),          i_t = d_2 i_xx + βsi/(s + i) − γi,          r_t = d_3 r_xx + γi, which describes an infec...

Full description

Bibliographic Details
Main Authors: Yu, Chen Tzung, 余陳宗
Other Authors: Fu, Sheng Chen
Format: Others
Language:en_US
Online Access:http://ndltd.ncl.edu.tw/handle/29m432
id ndltd-TW-105NCCU5507001
record_format oai_dc
spelling ndltd-TW-105NCCU55070012019-05-15T23:09:26Z http://ndltd.ncl.edu.tw/handle/29m432 Traveling wave solutions for a diffusive SIR model 一個具擴散性的SIR模型之行進波解 Yu, Chen Tzung 余陳宗 碩士 國立政治大學 應用數學系 105  In this thesis, we study the existence of traveling waves of a reaction-diffusion equation for a diffusive epidemic SIR model          s_t = d_1 s_xx − βsi/(s + i),          i_t = d_2 i_xx + βsi/(s + i) − γi,          r_t = d_3 r_xx + γi, which describes an infectious disease outbreak in a closed population. Here β is the transmission coefficient, γ is the recovery or remove rate, and s, i, and r rep-resent numbers of susceptible individuals, infected individuals, and removed individuals, respectively, and d_1, d_2, and d_3 are their diffusion rates. We use the Schauder fixed point theorem, the Arzela-Ascoli theorem, and the maximum principle to show that this system has a traveling wave solution with minimum speed c=c*:=2√(d2( β - γ )). Our result answers an open problem proposed in [11]. Fu, Sheng Chen 符聖珍 學位論文 ; thesis 23 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立政治大學 === 應用數學系 === 105 ===  In this thesis, we study the existence of traveling waves of a reaction-diffusion equation for a diffusive epidemic SIR model          s_t = d_1 s_xx − βsi/(s + i),          i_t = d_2 i_xx + βsi/(s + i) − γi,          r_t = d_3 r_xx + γi, which describes an infectious disease outbreak in a closed population. Here β is the transmission coefficient, γ is the recovery or remove rate, and s, i, and r rep-resent numbers of susceptible individuals, infected individuals, and removed individuals, respectively, and d_1, d_2, and d_3 are their diffusion rates. We use the Schauder fixed point theorem, the Arzela-Ascoli theorem, and the maximum principle to show that this system has a traveling wave solution with minimum speed c=c*:=2√(d2( β - γ )). Our result answers an open problem proposed in [11].
author2 Fu, Sheng Chen
author_facet Fu, Sheng Chen
Yu, Chen Tzung
余陳宗
author Yu, Chen Tzung
余陳宗
spellingShingle Yu, Chen Tzung
余陳宗
Traveling wave solutions for a diffusive SIR model
author_sort Yu, Chen Tzung
title Traveling wave solutions for a diffusive SIR model
title_short Traveling wave solutions for a diffusive SIR model
title_full Traveling wave solutions for a diffusive SIR model
title_fullStr Traveling wave solutions for a diffusive SIR model
title_full_unstemmed Traveling wave solutions for a diffusive SIR model
title_sort traveling wave solutions for a diffusive sir model
url http://ndltd.ncl.edu.tw/handle/29m432
work_keys_str_mv AT yuchentzung travelingwavesolutionsforadiffusivesirmodel
AT yúchénzōng travelingwavesolutionsforadiffusivesirmodel
AT yuchentzung yīgèjùkuòsànxìngdesirmóxíngzhīxíngjìnbōjiě
AT yúchénzōng yīgèjùkuòsànxìngdesirmóxíngzhīxíngjìnbōjiě
_version_ 1719141813533540352