Influence of Relativity between RC Wall Thickness and Tie-Columns Depth on the Seismic Behavior of Frame with Infill RC Wall

碩士 === 國立交通大學 === 土木工程系所 === 105 === Partition wall is usually required in RC structure in practice to strengthen the stiffness of building, which also increases earthquake energy. As shown in the previous lateral loading test results that small-sized tie-column lose it toughness when the partition...

Full description

Bibliographic Details
Main Authors: Yang,Yu-Chieh, 楊雨潔
Other Authors: Liu,Chun-Hsiu
Format: Others
Language:zh-TW
Published: 2017
Online Access:http://ndltd.ncl.edu.tw/handle/drw3t6
Description
Summary:碩士 === 國立交通大學 === 土木工程系所 === 105 === Partition wall is usually required in RC structure in practice to strengthen the stiffness of building, which also increases earthquake energy. As shown in the previous lateral loading test results that small-sized tie-column lose it toughness when the partition wall is allocated, and it also means that many mechanical behaviors lead partition wall damage the seismic capacity of structure. Taiwan situates in Circus-Pacific Seismic Belt, it is necessary to have comprehensive understanding about partition wall and to investigate the relationship between partition wall and other mechanical behaviors. In this research the test program is conducted on four specimen that two are pure frame (C35 and C20) and two are squared infill RC partition wall (C50-35W6 and C35-50W6). It is reveals that a structure with partition wall can endure more than 11 times lateral loading of a pure frame, especially when it compares to small-sized structure. In addition, the sequence and shape of wall destruction are two main factors to affect structure toughness. There are three types of wall destruction, shear type (X shape, / shape and \ shape), ㄇ type and U type. Structural engineers should avoid bevel frame design which usually crack abruptly. In general, there is no difference between ㄇ type and U type on toughness. Considering higher safety, if U type destruction can start from the bottom of the wall, people will not be hurt by RC wall. The destruction of ㄇ type and U type both spilt from left and right side with “I” shape or from top and bottom with “一” shape. In this research, it is found that partition wall destruction may not easily spread to tie-column and tie-column can keep its movement better if the partition wall spilt from top or bottom of the wall. Through Seismic Energy Dissipation Analysis, if partition wall spilt from top or bottom of the wall, effective column width will decrease thickness two times and the frame cannot keep original toughness capacity which will decrease rapidly after passing maximum strength. In conclusion, this research suggests that partition wall can be clipped under construction to make the destruction shape and sequence be predictable. Designer can not only predict the destruction model precisely, also keep frame toughness by clip in advance. Therefore, buildings can have stronger lateral loading force by allocate partition wall, and wall frame can keep its flexibility in light earthquake, small crack occur in moderate earthquake and wall spilt from tie-column in strong earthquake that building structure can keep original toughness capacity like pure frame.