Novel Dual-Band Miniature Microwave Passive Circuit

碩士 === 國立中央大學 === 電機工程學系 === 106 === In this thesis, very compact integrated passive circuits with high performance are presented. Today, the wireless communication system for multi-band demand is increasing. Therefore, more and more multi-band circuit of the basic components or subsystem design con...

Full description

Bibliographic Details
Main Authors: En-Wei Chang, 張恩維
Other Authors: Yo-Shen Lin
Format: Others
Language:zh-TW
Published: 2017
Online Access:http://ndltd.ncl.edu.tw/handle/h87jr2
id ndltd-TW-106NCU05442011
record_format oai_dc
spelling ndltd-TW-106NCU054420112019-05-16T00:15:46Z http://ndltd.ncl.edu.tw/handle/h87jr2 Novel Dual-Band Miniature Microwave Passive Circuit 新式微小化雙頻微波被動電路 En-Wei Chang 張恩維 碩士 國立中央大學 電機工程學系 106 In this thesis, very compact integrated passive circuits with high performance are presented. Today, the wireless communication system for multi-band demand is increasing. Therefore, more and more multi-band circuit of the basic components or subsystem design concept was presented in the recent year. However, the major bottleneck of the size reduction of active and passive microwave circuits is the requirement of multiple transmission lines with given electrical length. The traditional bridge T-coil will be equivalent to the transmission line, but only for single-frequency applications. In this work, the dual-band bridged T-coil is used to replace the conventional bridged T-coil, can be used in dual-band microwave passive circuit design, and While achieving the purpose of minimization. The dual-band bridged T-coil can be implemented using inductor and metal-insulator-metal (MIM) capacitor in GaN semiconductor and GaAs semiconductor IC process or Integrated Passive Device (IPD) process to achieve very compact size. It is then applied to the design of m Miniature dual-band branch-line coupler, dual-band Wilkinson power divider, and a triple-band absorptive band-stop filter (ABSF). First of all, the proposed Miniature dual-band branch-line coupler and dual-band Wilkinson power divider are fabricated in IPD process. The center frequency of both are 2.45 GHz and 5.5 GHz. The circuit size of Miniature dual-band branch-line coupler is 0.0123〖 λ〗_0×0.0245〖 λ〗_0 at 2.45 GHz, 0.0275〖 λ〗_0×0.055〖 λ〗_0 at 5.5 GHz. And the circuit size of Miniature dual-band Wilkinson power divider is 0.0145〖 λ〗_0×0.0133〖 λ〗_0 at 2.45 GHz, 0.0333〖 λ〗_0×0.0305〖 λ〗_0 at 5.5 GHz. Finally, the proposed Miniature triple-band ABSF is fabricated in two different process. At first, a single-band 7.2 GHz ABSF was designed with a conventional bridge T-coil, then a dual-band ABSF was designed with a dual-band bridge T-coil. The center frequency of dual-band ABSF was 4.8 GHz and 9.6 GHz. In the last, I cascade two filter which I described to a triple-band ABSF. The stop-band frequency of triple-band ABSF was 4.8 GHz, 7.2 GHz and 9.6 GHz. The circuit size of triple-band ABSF which is fabricated in IPD process is 0.038〖 λ〗_0×0.04〖 λ〗_0 at 4.8 GHz, 0.058〖 λ〗_0×0.06〖 λ〗_0 at 7.2 GHz and 0.077〖 λ〗_0×0.08〖 λ〗_0 at 9.6 GHz. And the circuit size of triple-band ABSF which is fabricated in GaAs semiconductor IC process is 0.0272〖 λ〗_0×0.0368〖 λ〗_0 at 4.8 GHz, 0.0407〖 λ〗_0×0.0552〖 λ〗_0 at 7.2 GHz and 0.0543〖 λ〗_0×0.0736〖 λ〗_0 at 9.6 GHz. Compared with current designs, the above circuits are smaller in size. The effectiveness of dual-band bridged T-coil on the design of miniaturized on-chip passive microwave circuit is also validated through proposed design examples, and in a single circuit to achieve dual-frequency characteristics. Yo-Shen Lin 林祐生 2017 學位論文 ; thesis 168 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立中央大學 === 電機工程學系 === 106 === In this thesis, very compact integrated passive circuits with high performance are presented. Today, the wireless communication system for multi-band demand is increasing. Therefore, more and more multi-band circuit of the basic components or subsystem design concept was presented in the recent year. However, the major bottleneck of the size reduction of active and passive microwave circuits is the requirement of multiple transmission lines with given electrical length. The traditional bridge T-coil will be equivalent to the transmission line, but only for single-frequency applications. In this work, the dual-band bridged T-coil is used to replace the conventional bridged T-coil, can be used in dual-band microwave passive circuit design, and While achieving the purpose of minimization. The dual-band bridged T-coil can be implemented using inductor and metal-insulator-metal (MIM) capacitor in GaN semiconductor and GaAs semiconductor IC process or Integrated Passive Device (IPD) process to achieve very compact size. It is then applied to the design of m Miniature dual-band branch-line coupler, dual-band Wilkinson power divider, and a triple-band absorptive band-stop filter (ABSF). First of all, the proposed Miniature dual-band branch-line coupler and dual-band Wilkinson power divider are fabricated in IPD process. The center frequency of both are 2.45 GHz and 5.5 GHz. The circuit size of Miniature dual-band branch-line coupler is 0.0123〖 λ〗_0×0.0245〖 λ〗_0 at 2.45 GHz, 0.0275〖 λ〗_0×0.055〖 λ〗_0 at 5.5 GHz. And the circuit size of Miniature dual-band Wilkinson power divider is 0.0145〖 λ〗_0×0.0133〖 λ〗_0 at 2.45 GHz, 0.0333〖 λ〗_0×0.0305〖 λ〗_0 at 5.5 GHz. Finally, the proposed Miniature triple-band ABSF is fabricated in two different process. At first, a single-band 7.2 GHz ABSF was designed with a conventional bridge T-coil, then a dual-band ABSF was designed with a dual-band bridge T-coil. The center frequency of dual-band ABSF was 4.8 GHz and 9.6 GHz. In the last, I cascade two filter which I described to a triple-band ABSF. The stop-band frequency of triple-band ABSF was 4.8 GHz, 7.2 GHz and 9.6 GHz. The circuit size of triple-band ABSF which is fabricated in IPD process is 0.038〖 λ〗_0×0.04〖 λ〗_0 at 4.8 GHz, 0.058〖 λ〗_0×0.06〖 λ〗_0 at 7.2 GHz and 0.077〖 λ〗_0×0.08〖 λ〗_0 at 9.6 GHz. And the circuit size of triple-band ABSF which is fabricated in GaAs semiconductor IC process is 0.0272〖 λ〗_0×0.0368〖 λ〗_0 at 4.8 GHz, 0.0407〖 λ〗_0×0.0552〖 λ〗_0 at 7.2 GHz and 0.0543〖 λ〗_0×0.0736〖 λ〗_0 at 9.6 GHz. Compared with current designs, the above circuits are smaller in size. The effectiveness of dual-band bridged T-coil on the design of miniaturized on-chip passive microwave circuit is also validated through proposed design examples, and in a single circuit to achieve dual-frequency characteristics.
author2 Yo-Shen Lin
author_facet Yo-Shen Lin
En-Wei Chang
張恩維
author En-Wei Chang
張恩維
spellingShingle En-Wei Chang
張恩維
Novel Dual-Band Miniature Microwave Passive Circuit
author_sort En-Wei Chang
title Novel Dual-Band Miniature Microwave Passive Circuit
title_short Novel Dual-Band Miniature Microwave Passive Circuit
title_full Novel Dual-Band Miniature Microwave Passive Circuit
title_fullStr Novel Dual-Band Miniature Microwave Passive Circuit
title_full_unstemmed Novel Dual-Band Miniature Microwave Passive Circuit
title_sort novel dual-band miniature microwave passive circuit
publishDate 2017
url http://ndltd.ncl.edu.tw/handle/h87jr2
work_keys_str_mv AT enweichang noveldualbandminiaturemicrowavepassivecircuit
AT zhāngēnwéi noveldualbandminiaturemicrowavepassivecircuit
AT enweichang xīnshìwēixiǎohuàshuāngpínwēibōbèidòngdiànlù
AT zhāngēnwéi xīnshìwēixiǎohuàshuāngpínwēibōbèidòngdiànlù
_version_ 1719164384656228352