A study of eigenvalue distribution of Hermitian Toeplitz matrix

碩士 === 國立中山大學 === 應用數學系研究所 === 107 === Hermitian Toeplitz matrix arises from many real applications, such as solving differential equations by using finite difference method. In this paper, we consider the convergence rate of solving linear system Ax = b with the Hermitian Toeplitz matrix by using c...

Full description

Bibliographic Details
Main Authors: CHEONG SOI FONG, 張瑞鋒
Other Authors: Tsung-Lin Lee
Format: Others
Language:zh-TW
Published: 2019
Online Access:http://ndltd.ncl.edu.tw/handle/7xrky3
id ndltd-TW-107NSYS5507008
record_format oai_dc
spelling ndltd-TW-107NSYS55070082019-09-17T03:40:11Z http://ndltd.ncl.edu.tw/handle/7xrky3 A study of eigenvalue distribution of Hermitian Toeplitz matrix 自伴隨常對角矩陣的特徵值分布探討 CHEONG SOI FONG 張瑞鋒 碩士 國立中山大學 應用數學系研究所 107 Hermitian Toeplitz matrix arises from many real applications, such as solving differential equations by using finite difference method. In this paper, we consider the convergence rate of solving linear system Ax = b with the Hermitian Toeplitz matrix by using conjugate gradient method. The convergence rate of conjugate gradient method basically depends on the condition number on the matrix. We demonstrate the upper bound and lower bound of eigenvalues of Hermitian Toeplitz matrix. In the mathematical experiments, we notice that when the size of Hermitian Toeplitz matrix becomes larger, the distribution of the eigenvalues seems approach the associated distribution function. Tsung-Lin Lee 李宗錂 2019 學位論文 ; thesis 34 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立中山大學 === 應用數學系研究所 === 107 === Hermitian Toeplitz matrix arises from many real applications, such as solving differential equations by using finite difference method. In this paper, we consider the convergence rate of solving linear system Ax = b with the Hermitian Toeplitz matrix by using conjugate gradient method. The convergence rate of conjugate gradient method basically depends on the condition number on the matrix. We demonstrate the upper bound and lower bound of eigenvalues of Hermitian Toeplitz matrix. In the mathematical experiments, we notice that when the size of Hermitian Toeplitz matrix becomes larger, the distribution of the eigenvalues seems approach the associated distribution function.
author2 Tsung-Lin Lee
author_facet Tsung-Lin Lee
CHEONG SOI FONG
張瑞鋒
author CHEONG SOI FONG
張瑞鋒
spellingShingle CHEONG SOI FONG
張瑞鋒
A study of eigenvalue distribution of Hermitian Toeplitz matrix
author_sort CHEONG SOI FONG
title A study of eigenvalue distribution of Hermitian Toeplitz matrix
title_short A study of eigenvalue distribution of Hermitian Toeplitz matrix
title_full A study of eigenvalue distribution of Hermitian Toeplitz matrix
title_fullStr A study of eigenvalue distribution of Hermitian Toeplitz matrix
title_full_unstemmed A study of eigenvalue distribution of Hermitian Toeplitz matrix
title_sort study of eigenvalue distribution of hermitian toeplitz matrix
publishDate 2019
url http://ndltd.ncl.edu.tw/handle/7xrky3
work_keys_str_mv AT cheongsoifong astudyofeigenvaluedistributionofhermitiantoeplitzmatrix
AT zhāngruìfēng astudyofeigenvaluedistributionofhermitiantoeplitzmatrix
AT cheongsoifong zìbànsuíchángduìjiǎojǔzhèndetèzhēngzhífēnbùtàntǎo
AT zhāngruìfēng zìbànsuíchángduìjiǎojǔzhèndetèzhēngzhífēnbùtàntǎo
AT cheongsoifong studyofeigenvaluedistributionofhermitiantoeplitzmatrix
AT zhāngruìfēng studyofeigenvaluedistributionofhermitiantoeplitzmatrix
_version_ 1719251443625492480