et-enhanced turbulent combustion

A study of the squish-jet design concept in spark ignition engines, with central ignition, was conducted in a constant volume chamber. The effects of jet size, jet number and jet orientation in generating turbulence and jet enhanced turbulent combustion were investigated. Three sets of configuration...

Full description

Bibliographic Details
Main Author: Gete, Zenebe
Language:English
Published: University of British Columbia 2010
Subjects:
Online Access:http://hdl.handle.net/2429/29969
id ndltd-UBC-oai-circle.library.ubc.ca-2429-29969
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-299692018-01-05T17:45:23Z et-enhanced turbulent combustion Gete, Zenebe Turbulence Jet propulsion Combustion A study of the squish-jet design concept in spark ignition engines, with central ignition, was conducted in a constant volume chamber. The effects of jet size, jet number and jet orientation in generating turbulence and jet enhanced turbulent combustion were investigated. Three sets of configurations with three port sizes were used in this study. The research was carried out in three stages: 1.Qualitative information was obtained from flow visualization experiments via schlieren photography at 1000 frames per second. The flow medium was air. A sequence of frames at specific time intervals were selected to study the results from the respective configurations and jet sizes. The swirling nature of the flow is vivid in the offset arrangement. 2.Pre-ignition pressure and combustion pressure traces were measured with a piezoelectric pressure transducer from which characterising parameters such as maximum pressure, ignition advance and mass burn rate were analysed. Mass fraction curves were calculated using the simple model of fractional pressure rise. A maximum pressure increase of 66% over the reference quiescent combustion case, and combustion duration reduction of 77% were obtained for the offset arrangement with 2 mm diameter port. Comparisons of the times required for 10%, 50% and 90% mass burned are identified and confirmed that it took the 2 mm jet the shortest time to burn 90% of the mixture in the chamber. 3.Two-component velocity measurements were made using an LDV system. Measurements were taken in the central vertical plane of the chamber at specified locations. The data collected were window ensemble- averaged for the mean and fluctuating velocities over a number of cycles. Data intermittency and low data rate precluded, however, cycle-by-cycle analysis. Mean tangential velocities were calculated for each case and the data were used to construct a movie of the tangential velocity as a function of time, suitable for quantitative flow visualization. The vortical nature of the flow was recorded, the distribution being neither solid body rotation nor free vortex, but some complex fluid motion. The jet scale and orientation influence the in generation of turbulence flow field in the chamber, affecting the rate of combustion and the ensuing maximum pressure rise. The offset jet arrangement gives the best results, whereas radially opposed jets have a reduced effect. Increasing the number of jets in opposed arrangement does not enhance turbulent flow. Turbulent flow in the spark region during the onset of ignition was found to be important. Applied Science, Faculty of Mechanical Engineering, Department of Graduate 2010-11-16T17:15:45Z 2010-11-16T17:15:45Z 1991 Text Thesis/Dissertation http://hdl.handle.net/2429/29969 eng For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. University of British Columbia
collection NDLTD
language English
sources NDLTD
topic Turbulence
Jet propulsion
Combustion
spellingShingle Turbulence
Jet propulsion
Combustion
Gete, Zenebe
et-enhanced turbulent combustion
description A study of the squish-jet design concept in spark ignition engines, with central ignition, was conducted in a constant volume chamber. The effects of jet size, jet number and jet orientation in generating turbulence and jet enhanced turbulent combustion were investigated. Three sets of configurations with three port sizes were used in this study. The research was carried out in three stages: 1.Qualitative information was obtained from flow visualization experiments via schlieren photography at 1000 frames per second. The flow medium was air. A sequence of frames at specific time intervals were selected to study the results from the respective configurations and jet sizes. The swirling nature of the flow is vivid in the offset arrangement. 2.Pre-ignition pressure and combustion pressure traces were measured with a piezoelectric pressure transducer from which characterising parameters such as maximum pressure, ignition advance and mass burn rate were analysed. Mass fraction curves were calculated using the simple model of fractional pressure rise. A maximum pressure increase of 66% over the reference quiescent combustion case, and combustion duration reduction of 77% were obtained for the offset arrangement with 2 mm diameter port. Comparisons of the times required for 10%, 50% and 90% mass burned are identified and confirmed that it took the 2 mm jet the shortest time to burn 90% of the mixture in the chamber. 3.Two-component velocity measurements were made using an LDV system. Measurements were taken in the central vertical plane of the chamber at specified locations. The data collected were window ensemble- averaged for the mean and fluctuating velocities over a number of cycles. Data intermittency and low data rate precluded, however, cycle-by-cycle analysis. Mean tangential velocities were calculated for each case and the data were used to construct a movie of the tangential velocity as a function of time, suitable for quantitative flow visualization. The vortical nature of the flow was recorded, the distribution being neither solid body rotation nor free vortex, but some complex fluid motion. The jet scale and orientation influence the in generation of turbulence flow field in the chamber, affecting the rate of combustion and the ensuing maximum pressure rise. The offset jet arrangement gives the best results, whereas radially opposed jets have a reduced effect. Increasing the number of jets in opposed arrangement does not enhance turbulent flow. Turbulent flow in the spark region during the onset of ignition was found to be important. === Applied Science, Faculty of === Mechanical Engineering, Department of === Graduate
author Gete, Zenebe
author_facet Gete, Zenebe
author_sort Gete, Zenebe
title et-enhanced turbulent combustion
title_short et-enhanced turbulent combustion
title_full et-enhanced turbulent combustion
title_fullStr et-enhanced turbulent combustion
title_full_unstemmed et-enhanced turbulent combustion
title_sort et-enhanced turbulent combustion
publisher University of British Columbia
publishDate 2010
url http://hdl.handle.net/2429/29969
work_keys_str_mv AT getezenebe etenhancedturbulentcombustion
_version_ 1718594031764635648