Analysis of chromosome I rearrangements in Caenorhabditis elegans

In this thesis, chromosome I rearrangements were used to study the organization of essential genes and regions important for chromosome behaviour in the nematode Caenorhabditis elegans. To facilitate the genetic mapping of mutations in essential genes, rearrangements were isolated using a procedure...

Full description

Bibliographic Details
Main Author: McKim, Kim Stewart
Language:English
Published: University of British Columbia 2011
Subjects:
Online Access:http://hdl.handle.net/2429/31041
id ndltd-UBC-oai-circle.library.ubc.ca-2429-31041
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-310412018-01-05T17:45:49Z Analysis of chromosome I rearrangements in Caenorhabditis elegans McKim, Kim Stewart Caenorhabditis elegans -- Genetics In this thesis, chromosome I rearrangements were used to study the organization of essential genes and regions important for chromosome behaviour in the nematode Caenorhabditis elegans. To facilitate the genetic mapping of mutations in essential genes, rearrangements were isolated using a procedure designed to recover derivative chromosome I duplications shortened by gamma radiation from existing duplications. Sixty-two duplications were isolated in this way. These duplications, along with three deletions isolated in this study and 9 existing deletions of the region, divided the left half of chromosome I into at least 24 regions. Protocols were developed and used to rapidly map mutations into the regions defined by the breakpoints. The techniques and results described demonstrate the feasibility of carrying out a similar analysis on the whole genome. The majority of duplications behaved as if they were free; that is they segregated independently of the euploid chromosome set. While size was an important determinant of mitotic stability, clear exceptions to a size - stability correlation were observed. For example, despite its larger size, hDp72 was lost during cell division more frequently than hDpl8, suggesting features of chromosome structure were important. Shortening of duplications in the unc-11 dpy-5 region caused greater reductions in mitotic stability than similar sized shortenings in the dpy-5 unc-13 region. Therefore, specific sequences appear to influence duplication stability. Some free duplications were also observed to break spontaneously. Breakage occurred at different frequencies for different duplications and correlated with mitotic instability. The meiotic properties of four translocations involving chromosome I were examined. No recombination was observed in any of the translocation heterozygotes along the left (let-362 - unc-13) portion of chromosome I. By isolating a half-translocation chromosome as a free duplication, I mapped the breakpoints of three of the translocations. The boundaries of cross-over suppression coincided with the physical breakpoints. These results agree with the proposal that DNA sequences at the right end of chromosome I are essential for homologue recognition followed by meiotic synapsis and recombination. The published data of other translocations and duplications indicates that each of the other five C. elegans chromosomes has DNA sequences localized to one end that are required for homologue recognition and recombination. Medicine, Faculty of Medical Genetics, Department of Graduate 2011-02-03T21:32:48Z 2011-02-03T21:32:48Z 1990 Text Thesis/Dissertation http://hdl.handle.net/2429/31041 eng For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. University of British Columbia
collection NDLTD
language English
sources NDLTD
topic Caenorhabditis elegans -- Genetics
spellingShingle Caenorhabditis elegans -- Genetics
McKim, Kim Stewart
Analysis of chromosome I rearrangements in Caenorhabditis elegans
description In this thesis, chromosome I rearrangements were used to study the organization of essential genes and regions important for chromosome behaviour in the nematode Caenorhabditis elegans. To facilitate the genetic mapping of mutations in essential genes, rearrangements were isolated using a procedure designed to recover derivative chromosome I duplications shortened by gamma radiation from existing duplications. Sixty-two duplications were isolated in this way. These duplications, along with three deletions isolated in this study and 9 existing deletions of the region, divided the left half of chromosome I into at least 24 regions. Protocols were developed and used to rapidly map mutations into the regions defined by the breakpoints. The techniques and results described demonstrate the feasibility of carrying out a similar analysis on the whole genome. The majority of duplications behaved as if they were free; that is they segregated independently of the euploid chromosome set. While size was an important determinant of mitotic stability, clear exceptions to a size - stability correlation were observed. For example, despite its larger size, hDp72 was lost during cell division more frequently than hDpl8, suggesting features of chromosome structure were important. Shortening of duplications in the unc-11 dpy-5 region caused greater reductions in mitotic stability than similar sized shortenings in the dpy-5 unc-13 region. Therefore, specific sequences appear to influence duplication stability. Some free duplications were also observed to break spontaneously. Breakage occurred at different frequencies for different duplications and correlated with mitotic instability. The meiotic properties of four translocations involving chromosome I were examined. No recombination was observed in any of the translocation heterozygotes along the left (let-362 - unc-13) portion of chromosome I. By isolating a half-translocation chromosome as a free duplication, I mapped the breakpoints of three of the translocations. The boundaries of cross-over suppression coincided with the physical breakpoints. These results agree with the proposal that DNA sequences at the right end of chromosome I are essential for homologue recognition followed by meiotic synapsis and recombination. The published data of other translocations and duplications indicates that each of the other five C. elegans chromosomes has DNA sequences localized to one end that are required for homologue recognition and recombination. === Medicine, Faculty of === Medical Genetics, Department of === Graduate
author McKim, Kim Stewart
author_facet McKim, Kim Stewart
author_sort McKim, Kim Stewart
title Analysis of chromosome I rearrangements in Caenorhabditis elegans
title_short Analysis of chromosome I rearrangements in Caenorhabditis elegans
title_full Analysis of chromosome I rearrangements in Caenorhabditis elegans
title_fullStr Analysis of chromosome I rearrangements in Caenorhabditis elegans
title_full_unstemmed Analysis of chromosome I rearrangements in Caenorhabditis elegans
title_sort analysis of chromosome i rearrangements in caenorhabditis elegans
publisher University of British Columbia
publishDate 2011
url http://hdl.handle.net/2429/31041
work_keys_str_mv AT mckimkimstewart analysisofchromosomeirearrangementsincaenorhabditiselegans
_version_ 1718594281087696896