Particulate fouling of sensible heat exchangers

Fouling by a petroleum gas oil and a dilute suspension of sand in water was studied as a function of mass flow rate and wall temperature. The experiments were carried out by circulating the liquid through a single tube maintained at constant heat flux by electrical heating. The change in fouling res...

Full description

Bibliographic Details
Main Author: Watkinson, Alan Paul
Language:English
Published: University of British Columbia 2011
Subjects:
Online Access:http://hdl.handle.net/2429/35710
id ndltd-UBC-oai-circle.library.ubc.ca-2429-35710
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-357102018-01-05T17:48:10Z Particulate fouling of sensible heat exchangers Watkinson, Alan Paul Particles Heat exchangers Fouling by a petroleum gas oil and a dilute suspension of sand in water was studied as a function of mass flow rate and wall temperature. The experiments were carried out by circulating the liquid through a single tube maintained at constant heat flux by electrical heating. The change in fouling resistance and pressure drop with time was measured. The fouling resistance of the water and of the oil at low heat fluxes grows to an asymptotic value. At higher heat fluxes the oil fouling resistance increased almost linearly with time after an induction period. The asymptotic fouling resistance of both the oil and the water decreased with increasing mass flow rate. At constant clean tube wall temperature the initial fouling rate of the oil decreased with increasing mass flow rate. The initial fouling rate of the water increased with increasing mass flow rate up to a critical mass flow rate, and then decreased with further increases in mass flow rate. At constant mass flow rate, the initial fouling rate of the oil depended exponentially on the clean tube wall temperature. An activation energy of 29 Kcal/mole was calculated for the oil fouling process by fitting the initial fouling rate data to an Arrhenius type of equation. The pressure drop increase showed the same general trends with mass flow rate and tube wall temperature as did the fouling resistance. Fouling resistances for heated Kraft cooking liquor, calculated from pulp mill operating data and from a single fouling experiment, appeared to follow similar trends to those, followed in common by the gas oil and the water. The experimental results of this study were compared to the mathematical model of Kern and Seaton. While the shape of most fouling curves was in agreement with that predicted generally by this model, dependence of the initial fouling rate and of the asymptotic fouling resistance of the gas oil on the mass flow rate were both in disagreement with the detailed predictions of the model. For low mass flow rates of the water, however, even the detailed predictions were borne out. It was, moreover, possible to remove part of the sand deposit by increasing the velocity of the water, in accord with the postulated removal mechanism of Kern and Seaton, but the coke-like deposit from the gas oil could not be similarly removed by increasing the oil velocity. Mathematical models are developed in which the deposition term is written as the product of a material flux to the wall region and a sticking probability, after Parkins, and the removal term depends on the shear stress, after Kern and Seaton. Specific cases are considered where deposition is controlled by transfer to the surface, adhesion at the surface, and a combination of both steps.. Where deposition is controlled partly by transfer and partly by adhesion, the model predicts mass flow rate and temperature dependence of the initial fouling rate in agreement with the experimental results found for the oil. The observed asymptotic fouling resistance of the oil, however, depended less strongly on the reciprocal of the mass flow rate than is predicted by the model. Where transfer alone controls the deposition process, the extended model reduces to a form similar to that of Kern and Seaton. Applied Science, Faculty of Chemical and Biological Engineering, Department of Graduate 2011-06-23T20:24:07Z 2011-06-23T20:24:07Z 1968 Text Thesis/Dissertation http://hdl.handle.net/2429/35710 eng For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. University of British Columbia
collection NDLTD
language English
sources NDLTD
topic Particles
Heat exchangers
spellingShingle Particles
Heat exchangers
Watkinson, Alan Paul
Particulate fouling of sensible heat exchangers
description Fouling by a petroleum gas oil and a dilute suspension of sand in water was studied as a function of mass flow rate and wall temperature. The experiments were carried out by circulating the liquid through a single tube maintained at constant heat flux by electrical heating. The change in fouling resistance and pressure drop with time was measured. The fouling resistance of the water and of the oil at low heat fluxes grows to an asymptotic value. At higher heat fluxes the oil fouling resistance increased almost linearly with time after an induction period. The asymptotic fouling resistance of both the oil and the water decreased with increasing mass flow rate. At constant clean tube wall temperature the initial fouling rate of the oil decreased with increasing mass flow rate. The initial fouling rate of the water increased with increasing mass flow rate up to a critical mass flow rate, and then decreased with further increases in mass flow rate. At constant mass flow rate, the initial fouling rate of the oil depended exponentially on the clean tube wall temperature. An activation energy of 29 Kcal/mole was calculated for the oil fouling process by fitting the initial fouling rate data to an Arrhenius type of equation. The pressure drop increase showed the same general trends with mass flow rate and tube wall temperature as did the fouling resistance. Fouling resistances for heated Kraft cooking liquor, calculated from pulp mill operating data and from a single fouling experiment, appeared to follow similar trends to those, followed in common by the gas oil and the water. The experimental results of this study were compared to the mathematical model of Kern and Seaton. While the shape of most fouling curves was in agreement with that predicted generally by this model, dependence of the initial fouling rate and of the asymptotic fouling resistance of the gas oil on the mass flow rate were both in disagreement with the detailed predictions of the model. For low mass flow rates of the water, however, even the detailed predictions were borne out. It was, moreover, possible to remove part of the sand deposit by increasing the velocity of the water, in accord with the postulated removal mechanism of Kern and Seaton, but the coke-like deposit from the gas oil could not be similarly removed by increasing the oil velocity. Mathematical models are developed in which the deposition term is written as the product of a material flux to the wall region and a sticking probability, after Parkins, and the removal term depends on the shear stress, after Kern and Seaton. Specific cases are considered where deposition is controlled by transfer to the surface, adhesion at the surface, and a combination of both steps.. Where deposition is controlled partly by transfer and partly by adhesion, the model predicts mass flow rate and temperature dependence of the initial fouling rate in agreement with the experimental results found for the oil. The observed asymptotic fouling resistance of the oil, however, depended less strongly on the reciprocal of the mass flow rate than is predicted by the model. Where transfer alone controls the deposition process, the extended model reduces to a form similar to that of Kern and Seaton. === Applied Science, Faculty of === Chemical and Biological Engineering, Department of === Graduate
author Watkinson, Alan Paul
author_facet Watkinson, Alan Paul
author_sort Watkinson, Alan Paul
title Particulate fouling of sensible heat exchangers
title_short Particulate fouling of sensible heat exchangers
title_full Particulate fouling of sensible heat exchangers
title_fullStr Particulate fouling of sensible heat exchangers
title_full_unstemmed Particulate fouling of sensible heat exchangers
title_sort particulate fouling of sensible heat exchangers
publisher University of British Columbia
publishDate 2011
url http://hdl.handle.net/2429/35710
work_keys_str_mv AT watkinsonalanpaul particulatefoulingofsensibleheatexchangers
_version_ 1718595550142529536