Mechanistic investigations of rhodium-catalyzed alkyne hydrothiolation

Herein, thorough mechanistic investigations into alkyne hydrothiolation catalyzed by [Tp*RhI(PPh₃)₂] (Tp* = tris(3,5-dimethylpyrazolyl)borate) are reported. The mechanism is shown to proceed through an intermediate [Tp*RhIIIH(SR)] complex (R = alkyl, aryl). Alkyne migratory insertion is shown to occ...

Full description

Bibliographic Details
Main Author: Wathier, Matthew James
Language:English
Published: University of British Columbia 2016
Online Access:http://hdl.handle.net/2429/59308
id ndltd-UBC-oai-circle.library.ubc.ca-2429-59308
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-593082018-01-05T17:29:21Z Mechanistic investigations of rhodium-catalyzed alkyne hydrothiolation Wathier, Matthew James Herein, thorough mechanistic investigations into alkyne hydrothiolation catalyzed by [Tp*RhI(PPh₃)₂] (Tp* = tris(3,5-dimethylpyrazolyl)borate) are reported. The mechanism is shown to proceed through an intermediate [Tp*RhIIIH(SR)] complex (R = alkyl, aryl). Alkyne migratory insertion is shown to occur chemoselectively into the Rh-SR bond, despite the availability of a Rh-H bond, to produce a rhodathiacyclobutene intermediate. The regioselectivity of product formation is revealed to be the result of a competition between 1,2 and 2,1 migratory insertion of the alkyne to produce regioisomeric rhodathiacyclobutene intermediates. Product formation occurs upon reductive elimination, which is associatively induced by coordination of thiol. Putative off-cycle intermediates [Tp*RhH(SR)(PMe₃)] (R = alkyl, aryl) have been successfully synthesized from [Tp*RhH(CH₃)(PMe₃)]. The mechanism of formation of the [Tp*RhH(SR)(PMe₃)] complexes is proposed to involve the reductive elimination of methane, associatively induced by coordination of thiol. This mechanism is analogous to the mechanism proposed for alkyne hydrothiolation catalyzed by [Tp*Rh(PPh₃)₂]. Alkyne hydrothiolation reactions in the presence of [Tp*RhH(SR)(PMe₃)] are shown to produce the same product regioisomer as reactions catalyzed by [Tp*Rh(PPh₃)₂]. The synthesis of the vinyl sulfone-containing drug K777, currently in clinical trials for the treatment of Chagas disease, via alkyne hydrothiolation methodology catalyzed by [RhCl(PPh₃)₃], is reviewed. The methodology proves to be versatile in the synthesis of K777 and related analogues. The analogues are assessed in terms of their reactivity towards Michael addition as a method of predicting pharmacodynamics properties. The methanolic pKAs of a series of para-substituted aryl thiols are reported and correlated to their predicted aqueous pKA values. The Hammett dual parameter correlation to the experimental data reveals that the acidity constants are more dependent on the inductive effects of the para-substituent compared to the resonance effect. The dual parameter correlation also allows for the prediction of the methanolic and aqueous acidity constant of any para-substituted aryl thiol, as long as the substituent’s resonance and induction Hammett constants are known. Science, Faculty of Graduate 2016-09-27T14:46:22Z 2016-09-28T02:02:24 2016 2016-11 Text Thesis/Dissertation http://hdl.handle.net/2429/59308 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description Herein, thorough mechanistic investigations into alkyne hydrothiolation catalyzed by [Tp*RhI(PPh₃)₂] (Tp* = tris(3,5-dimethylpyrazolyl)borate) are reported. The mechanism is shown to proceed through an intermediate [Tp*RhIIIH(SR)] complex (R = alkyl, aryl). Alkyne migratory insertion is shown to occur chemoselectively into the Rh-SR bond, despite the availability of a Rh-H bond, to produce a rhodathiacyclobutene intermediate. The regioselectivity of product formation is revealed to be the result of a competition between 1,2 and 2,1 migratory insertion of the alkyne to produce regioisomeric rhodathiacyclobutene intermediates. Product formation occurs upon reductive elimination, which is associatively induced by coordination of thiol. Putative off-cycle intermediates [Tp*RhH(SR)(PMe₃)] (R = alkyl, aryl) have been successfully synthesized from [Tp*RhH(CH₃)(PMe₃)]. The mechanism of formation of the [Tp*RhH(SR)(PMe₃)] complexes is proposed to involve the reductive elimination of methane, associatively induced by coordination of thiol. This mechanism is analogous to the mechanism proposed for alkyne hydrothiolation catalyzed by [Tp*Rh(PPh₃)₂]. Alkyne hydrothiolation reactions in the presence of [Tp*RhH(SR)(PMe₃)] are shown to produce the same product regioisomer as reactions catalyzed by [Tp*Rh(PPh₃)₂]. The synthesis of the vinyl sulfone-containing drug K777, currently in clinical trials for the treatment of Chagas disease, via alkyne hydrothiolation methodology catalyzed by [RhCl(PPh₃)₃], is reviewed. The methodology proves to be versatile in the synthesis of K777 and related analogues. The analogues are assessed in terms of their reactivity towards Michael addition as a method of predicting pharmacodynamics properties. The methanolic pKAs of a series of para-substituted aryl thiols are reported and correlated to their predicted aqueous pKA values. The Hammett dual parameter correlation to the experimental data reveals that the acidity constants are more dependent on the inductive effects of the para-substituent compared to the resonance effect. The dual parameter correlation also allows for the prediction of the methanolic and aqueous acidity constant of any para-substituted aryl thiol, as long as the substituent’s resonance and induction Hammett constants are known. === Science, Faculty of === Graduate
author Wathier, Matthew James
spellingShingle Wathier, Matthew James
Mechanistic investigations of rhodium-catalyzed alkyne hydrothiolation
author_facet Wathier, Matthew James
author_sort Wathier, Matthew James
title Mechanistic investigations of rhodium-catalyzed alkyne hydrothiolation
title_short Mechanistic investigations of rhodium-catalyzed alkyne hydrothiolation
title_full Mechanistic investigations of rhodium-catalyzed alkyne hydrothiolation
title_fullStr Mechanistic investigations of rhodium-catalyzed alkyne hydrothiolation
title_full_unstemmed Mechanistic investigations of rhodium-catalyzed alkyne hydrothiolation
title_sort mechanistic investigations of rhodium-catalyzed alkyne hydrothiolation
publisher University of British Columbia
publishDate 2016
url http://hdl.handle.net/2429/59308
work_keys_str_mv AT wathiermatthewjames mechanisticinvestigationsofrhodiumcatalyzedalkynehydrothiolation
_version_ 1718585411020783616