ENERGY EFFICIENCY EXPLORATION OF COARSE-GRAIN RECONFIGURABLE ARCHITECTURE WITH EMERGING NONVOLATILE MEMORY
With the rapid growth in consumer electronics, people expect thin, smart and powerful devices, e.g. Google Glass and other wearable devices. However, as portable electronic products become smaller, energy consumption becomes an issue that limits the development of portable systems due to battery lif...
Main Author: | |
---|---|
Format: | Others |
Published: |
ScholarWorks@UMass Amherst
2015
|
Subjects: | |
Online Access: | https://scholarworks.umass.edu/masters_theses_2/159 https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1150&context=masters_theses_2 |
Summary: | With the rapid growth in consumer electronics, people expect thin, smart and powerful devices, e.g. Google Glass and other wearable devices. However, as portable electronic products become smaller, energy consumption becomes an issue that limits the development of portable systems due to battery lifetime. In general, simply reducing device size cannot fully address the energy issue.
To tackle this problem, we propose an on-chip interconnect infrastructure and pro- gram storage structure for a coarse-grained reconfigurable architecture (CGRA) with emerging non-volatile embedded memory (MRAM). The interconnect is composed of a matrix of time-multiplexed switchboxes which can be dynamically reconfigured with the goal of energy reduction. The number of processors performing computation can also be adapted. The use of MRAM provides access to high-density storage and lower memory energy consumption versus more standard SRAM technologies. The combination of CGRA, MRAM, and flexible on-chip interconnection is considered for signal processing. This application domain is of interest based on its time-varying computing demands.
To evaluate CGRA architectural features, prototype architectures have been pro- totyped in a field-programmable gate array (FPGA). Measurements of energy, power, instruction count, and execution time performance are considered for a scalable num- ber of processors. Applications such as adaptive Viterbi decoding and Reed Solomon coding are used for evaluation. To complete this thesis, a time-scheduled switchbox was integrated into our CGRA model. This model was prototyped on an FPGA. It is shown that energy consumption can be reduced by about 30% if dynamic design reconfiguration is performed. |
---|