Nozzle Clogging Prevention and Analysis in Cold Spray

Cold spray is an additive manufacturing method in which powder particles are accelerated through a supersonic nozzle and impinged upon a nearby substrate, provided they reach their so-called critical velocity. True to its name, the cold spray process employs lower particle temperatures than other th...

Full description

Bibliographic Details
Main Author: Foelsche, Alden
Format: Others
Published: ScholarWorks@UMass Amherst 2020
Subjects:
CFD
Online Access:https://scholarworks.umass.edu/masters_theses_2/963
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=2034&context=masters_theses_2
id ndltd-UMASS-oai-scholarworks.umass.edu-masters_theses_2-2034
record_format oai_dc
spelling ndltd-UMASS-oai-scholarworks.umass.edu-masters_theses_2-20342021-09-09T17:23:30Z Nozzle Clogging Prevention and Analysis in Cold Spray Foelsche, Alden Cold spray is an additive manufacturing method in which powder particles are accelerated through a supersonic nozzle and impinged upon a nearby substrate, provided they reach their so-called critical velocity. True to its name, the cold spray process employs lower particle temperatures than other thermal spray processes while the particle velocities are comparably high. Because bonding occurs mostly in the solid state and at high speeds, cold spray deposits are distinguished for having low porosity and low residual stresses which nearly match those of the bulk material. One complication with the cold spray process is the tendency for nozzles to clog when spraying (in general) low-melting-point or dense metal powders. Clogging occurs when particles collide with the inner nozzle wall and bond to it rather than bouncing off and continuing downstream towards the substrate. The particles accumulate and eventually plug the nozzle passage. Clogging is inconvenient because it interrupts the spraying process, making it impossible to complete a task. Furthermore, when particle buildup occurs inside the nozzle, the working cross-sectional area decreases, which decreases the flow velocity and therefore the particle velocity, ultimately jeopardizing the particles’ ability to reach critical velocity at the substrate. In this work, computational fluid dynamics (CFD) is used to study various aspects of nozzle clogging. Nozzle cooling with supercritical CO2 as the refrigerant is investigated as a means to prevent clogging. The effects of nozzle cooling on both the driving gas and the particles are addressed. Simplified pressure oscillations at the nozzle inlet are imposed to determine whether such oscillations, if present, can cause clogging. Subsequently, more realistic and complicated flow oscillations are introduced to isolate a potential root cause of clogging. Finally, several novel nozzle internal geometries are evaluated for their effectiveness at preventing clogging. A recommendation is provided for a nozzle to be tested experimentally because it might completely prevent clogging. 2020-12-18T18:39:40Z text application/pdf https://scholarworks.umass.edu/masters_theses_2/963 https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=2034&context=masters_theses_2 Masters Theses ScholarWorks@UMass Amherst cold spray nozzle clogging nozzle cooling CFD Mechanical Engineering
collection NDLTD
format Others
sources NDLTD
topic cold spray
nozzle clogging
nozzle cooling
CFD
Mechanical Engineering
spellingShingle cold spray
nozzle clogging
nozzle cooling
CFD
Mechanical Engineering
Foelsche, Alden
Nozzle Clogging Prevention and Analysis in Cold Spray
description Cold spray is an additive manufacturing method in which powder particles are accelerated through a supersonic nozzle and impinged upon a nearby substrate, provided they reach their so-called critical velocity. True to its name, the cold spray process employs lower particle temperatures than other thermal spray processes while the particle velocities are comparably high. Because bonding occurs mostly in the solid state and at high speeds, cold spray deposits are distinguished for having low porosity and low residual stresses which nearly match those of the bulk material. One complication with the cold spray process is the tendency for nozzles to clog when spraying (in general) low-melting-point or dense metal powders. Clogging occurs when particles collide with the inner nozzle wall and bond to it rather than bouncing off and continuing downstream towards the substrate. The particles accumulate and eventually plug the nozzle passage. Clogging is inconvenient because it interrupts the spraying process, making it impossible to complete a task. Furthermore, when particle buildup occurs inside the nozzle, the working cross-sectional area decreases, which decreases the flow velocity and therefore the particle velocity, ultimately jeopardizing the particles’ ability to reach critical velocity at the substrate. In this work, computational fluid dynamics (CFD) is used to study various aspects of nozzle clogging. Nozzle cooling with supercritical CO2 as the refrigerant is investigated as a means to prevent clogging. The effects of nozzle cooling on both the driving gas and the particles are addressed. Simplified pressure oscillations at the nozzle inlet are imposed to determine whether such oscillations, if present, can cause clogging. Subsequently, more realistic and complicated flow oscillations are introduced to isolate a potential root cause of clogging. Finally, several novel nozzle internal geometries are evaluated for their effectiveness at preventing clogging. A recommendation is provided for a nozzle to be tested experimentally because it might completely prevent clogging.
author Foelsche, Alden
author_facet Foelsche, Alden
author_sort Foelsche, Alden
title Nozzle Clogging Prevention and Analysis in Cold Spray
title_short Nozzle Clogging Prevention and Analysis in Cold Spray
title_full Nozzle Clogging Prevention and Analysis in Cold Spray
title_fullStr Nozzle Clogging Prevention and Analysis in Cold Spray
title_full_unstemmed Nozzle Clogging Prevention and Analysis in Cold Spray
title_sort nozzle clogging prevention and analysis in cold spray
publisher ScholarWorks@UMass Amherst
publishDate 2020
url https://scholarworks.umass.edu/masters_theses_2/963
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=2034&context=masters_theses_2
work_keys_str_mv AT foelschealden nozzlecloggingpreventionandanalysisincoldspray
_version_ 1719479228220571648