The Vertical Structure of Tangential Winds in Tropical Cyclones: Observations, Theory, and Numerical Simulations

The vertical structure of the tangential wind field in tropical cyclones is investigated through observations, theory, and numerical simulations. First, a dataset of Doppler radar wind swaths obtained from NOAA/AOML/HRD is used to create azimuthal mean tangential wind fields for 7 storms on 17 diffe...

Full description

Bibliographic Details
Main Author: Stern, Daniel Philip
Format: Others
Published: Scholarly Repository 2010
Subjects:
Online Access:http://scholarlyrepository.miami.edu/oa_dissertations/445
id ndltd-UMIAMI-oai-scholarlyrepository.miami.edu-oa_dissertations-1444
record_format oai_dc
spelling ndltd-UMIAMI-oai-scholarlyrepository.miami.edu-oa_dissertations-14442011-12-13T15:40:02Z The Vertical Structure of Tangential Winds in Tropical Cyclones: Observations, Theory, and Numerical Simulations Stern, Daniel Philip The vertical structure of the tangential wind field in tropical cyclones is investigated through observations, theory, and numerical simulations. First, a dataset of Doppler radar wind swaths obtained from NOAA/AOML/HRD is used to create azimuthal mean tangential wind fields for 7 storms on 17 different days. Three conventional wisdoms of vertical structure are reexamined: the outward slope of the Radius of Maximum Winds (RMW) decreases with increasing intensity, the slope increases with the size of the RMW, and the RMW is a surface of constant absolute angular momentum (M). The slopes of the RMW and of M surfaces are objectively determined. The slopes are found to increase linearly with the size of the low-level RMW, and to be independent of the intensity of the storm. While the RMW is approximately an M surface, M systematically decreases with height along the RMW. The steady-state analytical theory of Emanuel (1986) is shown to make specific predictions regarding the vertical structure of tropical cyclones. It is found that in this model, the slope of the RMW is a linear function of its size and is independent of intensity, and that the RMW is almost exactly an M surface. A simple time-dependent model which is governed by the same assumptions as the analytical theory yields the same results. Idealized hurricane simulations are conducted using the Weather Research and Forecasting (WRF) model. The assumptions of Emanuel's theory, slantwise moist neutrality and thermal wind balance, are both found to be violated. Nevertheless, the vertical structure of the wind field itself is generally well predicted by the theory. The percentage rate at which the winds decay with height is found to be nearly independent of both size and intensity, in agreement with observations and theory. Deviations from this decay profile are shown to be due to gradient wind imbalance. The slope of the RMW increases linearly with its size, but is systematically too large compared to observations. Also in contrast to observations, M generally increases with height along the RMW. 2010-07-01 text application/pdf http://scholarlyrepository.miami.edu/oa_dissertations/445 Open Access Dissertations Scholarly Repository Maximum Potential Intensity Case Studies Supergradient Vertical Resolution Vertical Profiles Warm Core Diabatic Heating Microphysics Unbalanced Winds Simulated Tropical Cyclones Eyewall Quasi-steady
collection NDLTD
format Others
sources NDLTD
topic Maximum Potential Intensity
Case Studies
Supergradient
Vertical Resolution
Vertical Profiles
Warm Core
Diabatic Heating
Microphysics
Unbalanced Winds
Simulated Tropical Cyclones
Eyewall
Quasi-steady
spellingShingle Maximum Potential Intensity
Case Studies
Supergradient
Vertical Resolution
Vertical Profiles
Warm Core
Diabatic Heating
Microphysics
Unbalanced Winds
Simulated Tropical Cyclones
Eyewall
Quasi-steady
Stern, Daniel Philip
The Vertical Structure of Tangential Winds in Tropical Cyclones: Observations, Theory, and Numerical Simulations
description The vertical structure of the tangential wind field in tropical cyclones is investigated through observations, theory, and numerical simulations. First, a dataset of Doppler radar wind swaths obtained from NOAA/AOML/HRD is used to create azimuthal mean tangential wind fields for 7 storms on 17 different days. Three conventional wisdoms of vertical structure are reexamined: the outward slope of the Radius of Maximum Winds (RMW) decreases with increasing intensity, the slope increases with the size of the RMW, and the RMW is a surface of constant absolute angular momentum (M). The slopes of the RMW and of M surfaces are objectively determined. The slopes are found to increase linearly with the size of the low-level RMW, and to be independent of the intensity of the storm. While the RMW is approximately an M surface, M systematically decreases with height along the RMW. The steady-state analytical theory of Emanuel (1986) is shown to make specific predictions regarding the vertical structure of tropical cyclones. It is found that in this model, the slope of the RMW is a linear function of its size and is independent of intensity, and that the RMW is almost exactly an M surface. A simple time-dependent model which is governed by the same assumptions as the analytical theory yields the same results. Idealized hurricane simulations are conducted using the Weather Research and Forecasting (WRF) model. The assumptions of Emanuel's theory, slantwise moist neutrality and thermal wind balance, are both found to be violated. Nevertheless, the vertical structure of the wind field itself is generally well predicted by the theory. The percentage rate at which the winds decay with height is found to be nearly independent of both size and intensity, in agreement with observations and theory. Deviations from this decay profile are shown to be due to gradient wind imbalance. The slope of the RMW increases linearly with its size, but is systematically too large compared to observations. Also in contrast to observations, M generally increases with height along the RMW.
author Stern, Daniel Philip
author_facet Stern, Daniel Philip
author_sort Stern, Daniel Philip
title The Vertical Structure of Tangential Winds in Tropical Cyclones: Observations, Theory, and Numerical Simulations
title_short The Vertical Structure of Tangential Winds in Tropical Cyclones: Observations, Theory, and Numerical Simulations
title_full The Vertical Structure of Tangential Winds in Tropical Cyclones: Observations, Theory, and Numerical Simulations
title_fullStr The Vertical Structure of Tangential Winds in Tropical Cyclones: Observations, Theory, and Numerical Simulations
title_full_unstemmed The Vertical Structure of Tangential Winds in Tropical Cyclones: Observations, Theory, and Numerical Simulations
title_sort vertical structure of tangential winds in tropical cyclones: observations, theory, and numerical simulations
publisher Scholarly Repository
publishDate 2010
url http://scholarlyrepository.miami.edu/oa_dissertations/445
work_keys_str_mv AT sterndanielphilip theverticalstructureoftangentialwindsintropicalcyclonesobservationstheoryandnumericalsimulations
AT sterndanielphilip verticalstructureoftangentialwindsintropicalcyclonesobservationstheoryandnumericalsimulations
_version_ 1716389592352948224