Utilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /

Orientador: Vicente Lopes Junior === Resumo: Structural health monitoring (SHM) is an area that has been extensively studied for allowing the construction of systems that have the ability to identify damages at an early stage, thus being able to avoid serious future losses. Ideally, these systems ha...

Full description

Bibliographic Details
Main Author: Guimarães, Ana Paula Alves
Other Authors: Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira).
Format: Others
Language:Portuguese
Published: Ilha Solteira, 2016
Subjects:
Online Access:http://hdl.handle.net/11449/148718
id ndltd-UNESP-oai-www.athena.biblioteca.unesp.br-UEP01-000879661
record_format oai_dc
spelling ndltd-UNESP-oai-www.athena.biblioteca.unesp.br-UEP01-0008796612018-06-01T05:52:47ZtextporTL/UNESPGuimarães, Ana Paula AlvesUtilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /Ilha Solteira,2016f.Orientador: Vicente Lopes JuniorResumo: Structural health monitoring (SHM) is an area that has been extensively studied for allowing the construction of systems that have the ability to identify damages at an early stage, thus being able to avoid serious future losses. Ideally, these systems have the minimum of human interference. Systems that address the concept of learning have the ability to be autonomous. It is believed that by having these properties, the machine learning algorithms are an excellent choice to perform the steps of identifying, locating and assessing damage with ability to obtain highly accurate results with minimum error rates. This work is mainly focused on using support vector machine algorithm for monitoring structural condition and, thus, get better accuracy in identifying the presence or absence of damage, reducing error rates through the approaches of machine learning. It allows an intelligent and efficient monitoring system. LIBSVM library was used for analysing and validation of the proposed approach. Thus, it was feasible to conduct training and classification of data promoting the identification of damages. It was also possible to locate the damages in the structure. The results of identification and location of the damage was quite satisfactory.Sistema requerido: Adobe Acrobat ReaderMonitoramento da condição estruturalAprendizado de máquinaEstruturas inteligentesInteligência artificial.Support vector machineStructural health monitoringMachine learningSmart structuresArtificial intelligenceSupport vector machineMestreUniversidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira).http://hdl.handle.net/11449/148718
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Monitoramento da condição estrutural
Aprendizado de máquina
Estruturas inteligentes
Inteligência artificial.
Support vector machine
Structural health monitoring
Machine learning
Smart structures
Artificial intelligence
Support vector machine
spellingShingle Monitoramento da condição estrutural
Aprendizado de máquina
Estruturas inteligentes
Inteligência artificial.
Support vector machine
Structural health monitoring
Machine learning
Smart structures
Artificial intelligence
Support vector machine
Guimarães, Ana Paula Alves
Utilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /
description Orientador: Vicente Lopes Junior === Resumo: Structural health monitoring (SHM) is an area that has been extensively studied for allowing the construction of systems that have the ability to identify damages at an early stage, thus being able to avoid serious future losses. Ideally, these systems have the minimum of human interference. Systems that address the concept of learning have the ability to be autonomous. It is believed that by having these properties, the machine learning algorithms are an excellent choice to perform the steps of identifying, locating and assessing damage with ability to obtain highly accurate results with minimum error rates. This work is mainly focused on using support vector machine algorithm for monitoring structural condition and, thus, get better accuracy in identifying the presence or absence of damage, reducing error rates through the approaches of machine learning. It allows an intelligent and efficient monitoring system. LIBSVM library was used for analysing and validation of the proposed approach. Thus, it was feasible to conduct training and classification of data promoting the identification of damages. It was also possible to locate the damages in the structure. The results of identification and location of the damage was quite satisfactory. === Mestre
author2 Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira).
author_facet Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira).
Guimarães, Ana Paula Alves
author Guimarães, Ana Paula Alves
author_sort Guimarães, Ana Paula Alves
title Utilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /
title_short Utilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /
title_full Utilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /
title_fullStr Utilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /
title_full_unstemmed Utilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /
title_sort utilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /
publisher Ilha Solteira,
publishDate 2016
url http://hdl.handle.net/11449/148718
work_keys_str_mv AT guimaraesanapaulaalves utilizacaodoalgoritmodeaprendizadodemaquinasparamonitoramentodefalhasemestruturasinteligentes
_version_ 1718689140573208576